Basics of CNA: Complex Network Analysis

Overview of CNA

- different roles: hubs, weak ties, bridges, betweenness
- network heterogeneity
- robustness and immunization
- weighted and directed networks
- * communities
- * homophily
- * the emergence of social clusters and segregation
- * information and misinformation

Networks structural aspects

- * "trivial" representation of a complex system
- * Simple networks: few characteristics describe the network

* We need a language and a framework to describe complex networks

Basic Definitions

- * A graph (or a network) is made of nodes and links
- nodes (or vertices)
- * links (or edges, or arcs)
- * Graphs can be directed or undirected
- * Graphs can be weighted or unweighted

Undirected

Directed

Number of links (or neighbors) $i \rightarrow N_i$ $k_i = |N_i|$ degree

Singleton: a node whose degree is zero

 $N_i = \{\}, k_i = 0$

Degree

In directed networks $k_i^{in} = |P_i|$ in-degree $k_i^{out} = |S_i|$ out-degree $k_i = k_i^{in} + k_i^{out}$

Strength: Weighted degree

in-strength

out-strength

 $s_i = \sum w_{ij}$

 $j \in N_i$

 $s_i^{out} = \sum w_{ij}$ $j \in S_i$

Strength

Undirected

Weighted

Directed

Adjacency Matrix

NxN matrix

 $a_{ij} = \begin{cases} 0 & \text{no edge} \\ 1 & (i,j) \in L \end{cases}$

Undirected network: $a_{ij} = a_{ji}$

	a	b	С	d	е	f	g	h	i
a	(0	0	0	0	0	0	0	0	0
b		0	1	0	0	0	0	0	C
С	0	1	0	1	0	0	0	0	C
d	0	0	1	0	1	0	0	0	C
е	0	0	0	1	0	1	1	0	1
f	0	0	0	0	1	0	0	0	C
g	0	0	0	0	1	0	0	0	0
h		0	0	0	0	0	0	0	1
i j	0	0	0	0	1	0	0	1	0
j	0	0	0	0	1	0	0	0	1

Adjacency Matrix degree

 $k_i = \sum a_{ij} = \sum a_{ji}$

	a	b	С	d	е	f	g	h	i
a	(0	0	0	0	0	0	0	0	С
b	0	0	1	0	0	0	0	0	С
С	0	1	0	1	0	0	0	0	С
d	0	0	1	0	1	0	0	0	С
е	0	0	0	1	0	1	1	0	1
f	0	0	0	0	1	0	0	0	С
g	0	0	0	0	1	0	0	0	С
h	0	0	0	0	0	0	0	0	1
i	0	0	0	0	1	0	0	1	С
j	0	0	0	0	1	0	0	0	1

Adjacency Matrix directed

Matrix is not symmetric

$$k_i^{out} = \sum_{j} a_{ij}$$
$$k_i^{in} = \sum_{j} a_{ji}$$

	a	b	С	d	е	f	g	h	i
a	(0	0	0	0	0	0	0	0	0
b	0	0	1	0	0	0	0	0	0
С	0	0	0	1	0	0	0	0	0
d	0	0	0	0	1	0	0	0	0
е	0	0	0	1	0	0	0	0	1
f	0	0	0	0	1	0	0	0	0
g	0	0	0	0	1	0	0	0	0
h	0	0	0	0	0	0	0	0	1
i	0	0	0	0	1	0	0	1	0
j	0	0	0	0	0	0	0	0	1

Adjacency Matrix weighted

W_{ij}

	a	b	С	d	е	f	g	h	i
a	(0	0	0	0	0	0	0	0	0
b	0	0	3	0	0	0	0	0	0
С	0	0	0	4	0	0	0	0	0
d	0	0	0	0	2	0	0	0	0
е	0	0	0	4	0	0	0	0	4
f	0	0	0	0	1	0	0	0	0
g	0	0	0	0	1	0	0	0	0
h	0	0	0	0	0	0	0	0	2
i	0	0	0	0	2	0	0	2	0
i j	0	0	0	0	0	0	0	0	2

Sparse network representations

- * The memory/disk storage needed by an adjacency matrix is proportional to N²
- * In sparse networks (most real-world networks), this is terribly inefficient: most of the space is wasted storing zeros (non-links); for very large networks, adjacency matrices are unfeasible
- * It is much more efficient, often necessary, to store only the actual links, and assume that if a link is not listed it means it is not present
- * There are two commonly used sparse networks representations:
 - * Adjacency list
 - * Edge list

Undirected network: list each link twice Directed network: list only existing links

Adjacency list

Edge list

Edge (weighted) list

2 С 3 d 4 e f 4 g 2 3 1 j 1 L

Real networks are heterogeneous

Some nodes (and links) are much more important (central) than others!

- * **Centrality**: measure of importance of a node
- * Measures:
 - 1. Degree
 - 2. Closeness
 - 3. Betweenness

Degree

- **Degree of a node:** number of neighbors of the node
 - k_i = number of neighbors of node *i*
- High-degree nodes are called hubs
- Average degree of the network:

$$\langle k \rangle =$$

G.degree(2) # returns the degree of node 2

$\frac{\sum_{i} k_{i}}{N} = \frac{2L}{N}$

G.degree() # dict with the degree of all nodes of G

Closeness

where ℓ_{ij} is the distance between nodes *i* and *j*

nx.closeness_centrality(G, node) # closeness centrality # of node

Idea: a node is the more central the *closer* it is to the other nodes, on average

 $g_i = \sum_{i \neq i} \ell_{ij}$

Betweenness

$$b_i = \sum_{\substack{h \neq j \neq i}} \frac{\sigma_{hj}(i)}{\sigma_{hj}}$$

 σ_{hj} = number of shortest paths from *h* to *j*

Idea: a node is the more central the more often it is crossed by paths

 $\sigma_{hi}(i) =$ number of shortest paths from h to j running through i

Betweenness

Hubs usually have high betweenness, but there can be nodes with high betweenness that are not hubs

Betweenness

- Betweenness can be easily extended to links
- Link betweenness: fraction of shortest paths among all possible node pairs that pass through the link

- are most important
- On large networks it does not
- Solution: statistical approach
- classes of nodes and links with similar properties

Centrality distributions

On small networks it makes sense to ask which nodes or links

Instead of focusing on individual nodes and links, we consider

Centrality distributions

n_k = number of nodes with degree k

 $f_k = \frac{n_k}{N} = \text{frequency of degree } k$

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020 © 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience

Histogram

Centrality distributions

• Probability distribution: plot of probability pk versus k

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020 © 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience

Histogram

• For large N, the frequency f_k becomes the **probability** p_k of having degree k

Cumulative distributions

- than x as a function of x
- intervals to the right of x

• If the variable is not integer (e.g., betweenness), the range of the variable is divided into intervals (bins) and we count how many values fall in each interval

• Cumulative distribution P(x): probability that the variable takes values larger

• How to compute it: by summing the frequencies of the variable inside the

 $P(x) = \sum f_v$ $v \ge x$

Logarithmic scale

- Question: how to plot a probability distribution if the variable spans a large range of values, from small to (very) large?
- Answer: use the logarithmic scale
- How to do it: report the logarithms of the values on the xand y-axes
 - $log_{10} 10 = 1$ $log_{10} 1,000 = log_{10} 10^3 = 3$ $log_{10} 1,000,000 = log_{10} 10^6 = 6$

Degree distributions

Heavy-tail distributions: the variable goes from small to large values

Betweenness distributions

Heavy-tail distribution: the variable goes from small to large values

- A system is robust if the failure of some of its components does not affect its function
- Question: how can we define the robustness of a network?
- Answer: we remove nodes and/or links and see what happens to its structure
- Key point: connectedness
- If the Internet were not connected, it would be impossible to transmit signals (e.g., emails) between routers in different components

- Robustness test: checking how the connectedness of the network is affected as more and more nodes are removed
- How to do it: plot the relative size S of the largest connected component as a function of the fraction of removed nodes
- We suppose that the network is initially connected: there is only one component and S = 1
- As more and more nodes (and their links) are removed, the network is progressively broken up into components and S goes down

- Two strategies:
 - **1. Random failures:** nodes break down randomly, so they are all chosen with the same probability
 - **2. Attacks:** hubs are deliberately targeted the larger the **degree**, the higher the probability of removing the node
- In the first approach, we remove a fraction f of nodes, chosen at random
- In the second approach, we remove the fraction f of nodes with largest degree, from the one with largest degree downwards

Conclusion: real networks are robust against random failures but fragile against targeted attacks!

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020 © 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience

Robustness

Pointer to epidemic modeling

- * Studying network robustness is a great framework for comparing different immunization (vaccination) strategies
 - this very simple idea has been applied also for mitigating the diffusion of computer viruses
- * Problem: real contact network is not usually available...

Connectedness and components

- * A network is **connected** if there is a path between any two nodes
- * If a network is not connected, it is **disconnected** and has multiple connected components
- * A **connected component** is a connected subnetwork
 - * The largest one is called **giant component**; it often includes a substantial portion of the network
 - A singleton is the smallest-possible connected component

Figure 2.7: A network in which the nodes are students in a large American high school, and an edge joins two who had a romantic relationship at some point during the 18-month period in which the study was conducted [49].

Communities (or clusters): sets of tightly connected nodes

- **Example:** Twitter users with strong political preferences tend to follow those aligned with them and not to follow users with different political orientation
- Other examples: social circles in social networks, functional modules in protein interaction networks, groups of pages about the same topic on the Web, etc.

- Uncover the organization of the network
- Identify features of the nodes
- Classify the nodes based on their position in the clusters
- Find missing links

Why study communities?

Basic definitions: community

Two main features:

- High cohesion: communities have many internal links, so their nodes stick together
- High separation: communities are connected to each other by few links

Partitions

- The number of partitions of n objects is the **Bell** number B_n
- The Bell number grows faster than exponentially with *n*
- Conclusion: it makes no sense to look for interesting community structures by exploring the whole space of partitions! A smart exploration of the partition space must be performed.

n	B_n
1	1
2	2
3	5
4	15
5	52
6	203
7	877
8	4140
9	21147
10	115975
11	678570
12	4213597
13	27644437
14	190899322
15	1382958545

example: retweet networks

- * goal: detecting communities or clusters
- * "echo chambers"
- * **homophily**: tendency of individuals to link with similar ones
- * warning: no trivial linear relationships but interplay

Picture from: F. Menczer, S. Fortunato, C. A. Davis, A First Course in Network Science, Cambridge University Press, 2020

- * A network layout algorithm places nodes on a plane to visualize the structure of the network
- * There are many layout algorithms; the most commonly used are force-directed layout (a.k.a. spring layout) algorithms:
 - * Connected nodes are placed near each other
 - Links have similar length
 - * Link crossings are minimized
- * This is done by simulating a physical systems where adjacent nodes are connected by springs and otherwise repel each other
- * The community structure of the network can be revealed this way if the network is not too dense or too large

Drawing networks

