
Basics of CNA: Complex Network Analysis



Overview of CNA
❖ different roles: hubs, weak ties, bridges, betweenness

❖ network heterogeneity

❖ robustness and immunization

❖ weighted and directed networks 

❖ communities

❖ homophily

❖ the emergence of social clusters and segregation

❖ information and misinformation



Networks structural aspects
❖ "trivial" representation of a complex system

❖ Simple networks: few characteristics describe the network

❖ We need a language and a framework to describe complex networks

Star Ring Grid



Basic Definitions

❖ A graph (or a network) is made of nodes 
and links

❖ nodes (or vertices)

❖ links (or edges, or arcs)

❖ Graphs can be directed or undirected

❖ Graphs can be weighted or unweighted 

G = (N, L)

N = {n1, n2, …, nl} = {1,2,…, l}

L = {(i, j) : i, j ∈ N}
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DirectedUndirected

Unweighted

Weighted



Degree

Number of links (or neighbors)

i → Ni ki = |Ni |  degree

Singleton: a node whose degree is zero

Ni = {}, ki = 0

In directed networks

kin
i = |Pi |  in-degree

kout
i = |Si |  out-degree

ki = kin
i + kout

i



Strength

Strength: Weighted degree si = ∑
j∈Ni

wij

in-strength

out-strength
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DirectedUndirected

Unweighted

Weighted

a b c a b c

a b ca b c

ka = 0 kin
a = 0

kout
a = 0

kb = 5

sc = 9

kin
b = 4

kout
b = 3

kin
c = 3

kout
2 = 2

sa = 0 sb = 12

kc = 3
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a = 0

sout
a = 0 sin

b = 6
sout
b = 7
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c = 6

sout
2 = 4



Network representations
Adjacency Matrix
NxN matrix

aij = {0  no edge
1 (i, j) ∈ L

Undirected network: aij = aji

a

b c

d
e

f

g
h

i

j
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0
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Network representations
Adjacency Matrix
degree

a

b c

d
e

f

g
h

i

j

a b c d e f g h i j
a 
b 
c 
d 
e 
f 
g 
h 
i 
j

ki = ∑
j

aij = ∑
j

aji

ke = 5

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0



Network representations
Adjacency Matrix
directed

a

b c

d
e

f

g
h

i

j
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

a b c d e f g h i j
a 
b 
c 
d 
e 
f 
g 
h 
i 
j

Matrix is not symmetric

kout
i = ∑

j

aij

kin
i = ∑

j

aji

kout
e = 3

kin
e = 4



Network representations
Adjacency Matrix
weighted

a

b c

d
e

f

g
h

i

j
0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 4 0 0 0 0 4 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0
0 0 0 0 2 0 0 2 0 0
0 0 0 0 0 0 0 0 2 0
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h 
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Sparse network representations
❖ The memory/disk storage needed by an adjacency matrix is proportional to N2

❖ In sparse networks (most real-world networks), this is terribly inefficient: most of the 
space is wasted storing zeros (non-links); for very large networks, adjacency matrices are 
unfeasible

❖ It is much more efficient, often necessary, to store only the actual links, and assume that if 
a link is not listed it means it is not present  

❖ There are two commonly used sparse networks representations:

❖ Adjacency list

❖ Edge list



Adjacency list

a

b c

d
e

f

g
h

j

i

Undirected network: list each link twice

Directed network: list only existing links

a     
b   c 
c   b d 
d   c e 
e   d f i j g 
f   e 
g   e 
h   i 
i   h j 
j   e i



Edge list

a

b c

d
e

f

g
h

j

i

b c 
c d 
d e 
e f 
e g 
e i 
e j 
h i 
i j

L



Edge (weighted) list

a

b c

d
e

f

g
h

j

i

b c 2 
c d 3 
d e 4 
e f 4 
e g 1 
e i 1 
e j 2 
h i 3 
i j 1

L



Real networks are heterogeneous

Some nodes (and links) are much more important (central) than others! 

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Centrality measures

❖ Centrality: measure of importance of a node 

❖ Measures:

1. Degree

2. Closeness

3. Betweenness



Degree
• Degree of a node: number of neighbors of the node

• High-degree nodes are called hubs

G.degree(2) # returns the degree of node 2
G.degree()  # dict with the degree of all nodes of G

• Average degree of the network:

ki = number of neighbors of node i

⟨k⟩ =
∑i ki

N
=

2L
N



Closeness
Idea: a node is the more central the closer it is to the other nodes, on average 


where ℓij is the distance between nodes i and j

nx.closeness_centrality(G, node) # closeness centrality         
                                 # of node

gi =
1

∑j≠i ℓij



Betweenness

Idea: a node is the more central the more often it is crossed by paths

bi = ∑
h≠j≠i

σhj(i)
σhj

σhj = number of shortest paths from h to j
σhj(i) = number of shortest paths from h to j running through i



Betweenness
Hubs usually have high betweenness, but there can be nodes with high 

betweenness that are not hubs

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Betweenness

• Betweenness can be easily extended to links


• Link betweenness: fraction of shortest paths among all possible node pairs that pass 
through the link



Centrality distributions
• On small networks it makes sense to ask which nodes or links 

are most important 

• On large networks it does not

• Solution: statistical approach

• Instead of focusing on individual nodes and links, we consider 
classes of nodes and links with similar properties



Centrality distributions
Histogram

nk = number of nodes with degree k

fk =
nk

N
= frequency of degree k

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Centrality distributions

• For large N, the frequency fk becomes the probability pk of having degree k

•Probability distribution: plot of probability pk versus k

Histogram

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Cumulative distributions
• If the variable is not integer (e.g., betweenness), the range of the variable is 

divided into intervals (bins) and we count how many values fall in each interval

• Cumulative distribution P(x): probability that the variable takes values larger 
than x as a function of x

• How to compute it: by summing the frequencies of the variable inside the 
intervals to the right of x

𝑃(𝑥) =   ∑
𝑣 ≥𝑥

𝑓𝑣



Logarithmic scale
• Question: how to plot a probability distribution if the variable 

spans a large range of values, from small to (very) large?

• Answer: use the logarithmic scale

• How to do it: report the logarithms of the values on the x- 
and y-axes

log10 10 = 1
log10 1,000 = log10 103 = 3

log10 1,000,000 = log10 106 = 6



Degree distributions

Heavy-tail distributions: the variable goes from small to large values
A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Betweenness distributions

Heavy-tail distribution: the variable goes from small to large values
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A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Robustness
• A system is robust if the failure of some of its components does not 

affect its function

• Question: how can we define the robustness of a network? 

• Answer: we remove nodes and/or links and see what happens to its 
structure

• Key point: connectedness

• If the Internet were not connected, it would be impossible to transmit 
signals (e.g., emails) between routers in different components 



Robustness

• Robustness test:  checking how the connectedness of the network 
is affected as more and more nodes are removed

• How to do it: plot the relative size S of the largest connected 
component as a function of the fraction of removed nodes

• We suppose that the network is initially connected: there is only one 
component and S = 1

• As more and more nodes (and their links) are removed, the network 
is progressively broken up into components and S goes down



Robustness

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Robustness
• Two strategies:  

1. Random failures: nodes break down randomly, so they are all chosen 
with the same probability 

2. Attacks: hubs are deliberately targeted — the larger the degree, the 
higher the probability of removing the node  

• In the first approach, we remove a fraction f of nodes, chosen at random

• In the second approach, we remove the fraction f of nodes with largest 
degree, from the one with largest degree downwards



Robustness

Conclusion: real networks are robust against random failures but fragile against 
targeted attacks!

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Pointer to epidemic modeling

❖ Studying network robustness is a great framework for comparing different 
immunization (vaccination) strategies

❖ this very simple idea has been applied also for mitigating the diffusion of 
computer viruses

❖ Problem: real contact network is not usually available…



Connectedness and components
❖ A network is connected if there is a path between 

any two nodes

❖ If a network is not connected, it is disconnected and 
has multiple connected components

❖ A connected component is a connected subnetwork

❖ The largest one is called giant component; it often 
includes a substantial portion of the network

❖ A singleton is the smallest-possible connected 
component

Undirected Directed





Community structure
Communities (or clusters): sets of tightly connected nodes

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Community structure

• Example: Twitter users with strong 
political preferences tend to follow 
those aligned with them and not to 
follow users with different political 
orientation 

• Other examples: social circles in 
social networks, functional modules 
in protein interaction networks, 
groups of pages about the same 
topic on the Web, etc.

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Why study communities?

• Uncover the organization of the 
network 

• Identify features of the nodes 

• Classify the nodes based on their 
position in the clusters 

• Find missing links

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Basic definitions: community

Two main features:


• High cohesion: communities have 
many internal links, so their nodes 
stick together 

• High separation: communities are 
connected to each other by few links

A First Course in Network Science by F. Menczer, S. Fortunato & C.A. Davis. Cambridge University Press, 2020
© 2020 F. Menczer, S. Fortunato & C.A. Davis. cambridgeuniversitypress.github.io/FirstCourseNetworkScience



Partitions

• The number of partitions of n objects is the Bell 
number Bn 

• The Bell number grows faster than exponentially 
with n


• Conclusion: it makes no sense to look for 
interesting community structures by exploring the 
whole space of partitions! A smart exploration of the 
partition space must be performed.



example: retweet networks

❖ goal: detecting communities or clusters

❖ "echo chambers"

❖ homophily: tendency of individuals to link 
with similar ones

❖ warning: no trivial linear relationships but 
interplay

Picture from: F. Menczer, S. Fortunato, C. A. Davis, A First Course in Network Science, Cambridge University Press, 2020



Drawing networks
❖ A network layout algorithm places nodes on a plane to 

visualize the structure of the network

❖ There are many layout algorithms; the most commonly 
used are force-directed layout (a.k.a. spring layout) 
algorithms:

❖ Connected nodes are placed near each other

❖ Links have similar length

❖ Link crossings are minimized

❖ This is done by simulating a physical systems where 
adjacent nodes are connected by springs and otherwise 
repel each other

❖ The community structure of the network can be revealed 
this way if the network is not too dense or too large


