
Reading Security Protocol Specifications is
Difficult and Error Prone

COINS summer school 2021

June 18, 2021

Dieter Gollmann
Security in Distributed Applications

Preliminaries Reading Security Protocol Specifications is Difficult and Error Prone

About Myself

• PhD on a topic in cryptography (Linz, Austria, 1984)
• Postdoc at University of Karlsruhe, Germany (1986–1990)
• Information Security Group, Royal Holloway, University of

London (1984–1985, 1990–1997)
• Course director of the MSc in Information Security

• Microsoft Research Cambridge, 1998–2003
• Chair for Security in Distributed Applications, Hamburg

University of Technology, 9/2003 - 3/2021 (retired!)
• Visiting positions at Royal Holloway, QUT, Technical

University of Denmark, Tsinghua University, Nanyang
Technological University

Dieter Gollmann June 18, 2021 2/88

Preliminaries Reading Security Protocol Specifications is Difficult and Error Prone

Going Walkabout

• Talk about the difficult things you shouldn’t do if you have
to complete your PhD research within three years
• OAuth 2.0 – return on experience
• Protocols for the German eHealth card
• Observation on sources (in the web)

Dieter Gollmann June 18, 2021 3/88

Preliminaries Reading Security Protocol Specifications is Difficult and Error Prone

Security Protocols

Needham, Roger M., and Michael D. Schroeder.
“Using encryption for authentication in large networks of
computers”, Communications of the ACM 21 (12), 1978

1. A→ B : {IA, A}PKB

2. B → A : {IA, IB}PKA

3. A→ B : {IB}PKB

“We made it socially acceptable to write academic papers on
three-line protocols”

[Roger Needham]

Dieter Gollmann June 18, 2021 4/88

Preliminaries Reading Security Protocol Specifications is Difficult and Error Prone

Designing Security Protocols

Designing security protocols is difficult and error prone

[Popular line in many papers on formal protocol analysis]

Dieter Gollmann June 18, 2021 5/88

Preliminaries Reading Security Protocol Specifications is Difficult and Error Prone

Proving Protocol Security

• Research on formal protocol analysis started in the 1980s
• Success story: we have a range of analysis tools

• AVISPA, ProVerif, Scyther, Tamarin, . . .
• Help to avoid embarrassing mistakes [Tom Berson, former

president, IACR]
• ‘Serious’ security protocol proposals are expected to come

with formal proofs today
• How can it be that protocols succumb to attacks in

practice, although they had been formally verified?
• Has all this great research been in vain?

Dieter Gollmann June 18, 2021 6/88

Preliminaries Reading Security Protocol Specifications is Difficult and Error Prone

From Specification to Deployment

• Starting point: protocol specification, typically a public
standard
• Programmers develop an implementation that should

comply with the standard
• Might not work immediately; it took years to get compatible

implementations of software handling X.509 certificates
• For this presentation, let’s assume that such issues have

been resolved
• Programmers make design decisions on matters required

but not detailed in the specification
• For example, counter or pseudo-random number generator

for creating nonces, parser for comparing URLs, . . .
• Sysadmins configure the protocol when it is deployed

• Choice of ciphersuites, security policy rules, . . .

Dieter Gollmann June 18, 2021 7/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0

Dieter Gollmann June 18, 2021 8/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Use Case

• A user has an account with an identity provider (IdP)
• Facebook is an illustrative example for such an IdP

• The user stores personal data at a resource server
• Facebook is an illustrative example for such a service
• The user is the resource owner
• Resource server and IdP may be the same party

• An app running on the user’s device wants to access
certain user data
• The user has to authorize this request

• User decides whether to ‘delegate’ access rights to the app
• The resource server checks that a request is authorized

before giving access to the data

Dieter Gollmann June 18, 2021 9/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0

• OAuth 2.0 addresses this use case
• Specified in RFC 6749, October 2012
• OAuth 2.0 is an authorization protocol, not an

authentication protocol
• This is an important paradigm change

• OpenID Connect adds user authentication to OAuth 2.0
• Tenuous relation to OAuth 1.0, OpenID 1.0, OpenID 2.0

• Not earlier versions in the usual meaning of this term
• Marketing wanting to keep established ‘trademarks’?
• These protocols are now deprecated in favour of OAuth 2.0

• https://developers.google.com/identity/
protocols/oauth2/openid-connect#update-to-plus

Dieter Gollmann June 18, 2021 10/88

https://developers.google.com/identity/protocols/oauth2/openid-connect#update-to-plus
https://developers.google.com/identity/protocols/oauth2/openid-connect#update-to-plus

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 – Message Flow

client
‘an app’

authorization request

authorization grant

redirect URI

-

‘a user’

resource
owner @ IdP

��
� redirect URI

authorization grant

access token

- authorization
server ≈ IdP

��
� access token

resource

- resource
server

�

Dieter Gollmann June 18, 2021 11/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0

• This diagram is often the first contact with OAuth 2.0
• Top four images in my Google search on ‘OAuth 2.0’

• High level specification from RFC 6749
• Timeline of messages runs from top to bottom
• The authentication server is the IdP mentioned earlier
• Further security protocols that are expected to be in place

stay under the radar
• Trust relationships that are expected to be in place stay

under the radar

Dieter Gollmann June 18, 2021 12/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Protocol Endpoints [RFC 6749, Sec. 3]

• The authorization process utilizes two authorization server
endpoints (HTTP resources):
• Authorization endpoint – used by the client to obtain

authorization from the resource owner via user-agent
redirection

• Token endpoint – used by the client to exchange an
authorization grant for an access token, typically with client
authentication

• One client endpoint:
• Redirection endpoint – used by the authorization server to

return responses containing authorization credentials to the
client via the resource owner user-agent.

• Extension grant types MAY define additional endpoints as
needed

Dieter Gollmann June 18, 2021 13/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 – Client Registration [RFC 6749]

• Before initiating the protocol, the client registers with the
authorization server.
• The means through which the client registers with the

authorization server are beyond the scope of this
specification but typically involve end-user interaction with
an HTML registration form.
• When registering a client, the client developer SHALL:

• Specify the client type (confidential or public)
• Provide its client redirection URIs
• Include any other information required by the authz server

• Confidential clients can be authenticated by the
authorization server; the RFC does not specify how, but . . .
• The authorization server MUST require the use of TLS

when sending requests using password authentication

Dieter Gollmann June 18, 2021 14/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Authorization Grant

• Authorization Grant: expresses authorization to access a
resource; granted by resource owner; used by client to
obtain access token
• Access token: credential granting access to resource
• Authorization code: authorization grant obtained from

authorization server, authenticates client and resource
owner
• Three more grant types, but they are not relevant for this

presentation

• What is a ‘credential’?

Dieter Gollmann June 18, 2021 15/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Requesting an Authorization Code

• User navigates to client’s web page in browser (user agent)
• User clicks on a ‘Connect’ / ‘Sign in with’ button shown on

that web page; triggers a GET request to client
• Client now redirects the user agent to the authorization

server / IdP using the following query parameters:
• response type: code
• client id: id issued to the client
• redirect uri (optional): URI where the authorization server

should redirect its response to
• scope (optional): scope to be requested
• state (recommended): opaque value for maintaining state

between request and response
• Authorization code (and access token) returned to

redirect uri

Dieter Gollmann June 18, 2021 16/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Requesting an Authorization Code ctd.

• User must be authenticated at server and then may
authorize the client to access the requested resources
• Authorization server then redirects the user agent to the

redirect uri using the following query parameters:
• code: the authorization code
• state: value passed in the previous request (recommended)

• Client can use the authorization code to request an access
token (with appropriate client authentication), passes the
request parameters:
• grant type: authorization code
• code: authorization code received earlier
• redirect uri: redirect uri passed in the first request

Dieter Gollmann June 18, 2021 17/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 – Requesting an Authorization Code

(A) client requests authorization
(B) authz server authenticates user
(C) authz server issues authorization code
(D) client requests access token
(E) authz server issues access token

user
(resource

owner)

6

authorization
server

client identifier
(A) & redirect URI -

(B) user authenticates-

(C) authorization code
�

(B)
6

?

user agent

authorization code
(D) & redirect URI �
(E) access token

%�

(C)(A)

?

6

client

Dieter Gollmann June 18, 2021 18/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 – Messages

• Authorization Request

GET /authorize?response type=code&
client id=s6BhdRkqt3&state=xyz&
redirect uri=https://client.example.com HTTP/1.1
Host: server.example.com

• Authorization Response

HTTP/1.1 302 Found Location:
https://client.example.com/cb?
code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

• The “state” parameter links request and response

Dieter Gollmann June 18, 2021 19/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

On Cross-Site Request Forgery (CSRF)

• The client MUST implement CSRF protection for its
redirection URI
• The client SHOULD utilize the “state” request parameter to

deliver this value to the authorization server when making
an authorization request [RFC 6749, Sec. 10.12]
• RFC 6749 gives a security reason for using “state”
• RFC 6749 does not insist on the use of “state”, but some

other CSRF defence has to be present
• Spec of the CSRF defence is out of scope for RFC 6749
• Limiting the scope of a standard is a reasonable design

decision

• OAuth 2.0 security depends on aspects beyond RFC 6749

Dieter Gollmann June 18, 2021 20/88

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 for Native Apps [RFC 8252]

• Many mobile and desktop computing platforms support
inter-app communication via URIs by allowing apps to
register private-use URI schemes (sometimes referred to
as “custom URL schemes”) like “com.example.app”.
• When the browser or another app attempts to load a URI

with a private-use URI scheme, the app that registered it is
launched to handle the request.
• To perform an OAuth 2.0 authorization request with a

private-use URI scheme redirect, the native app launches
the browser with a standard authorization request, but one
where the redirection URI utilizes a private-use URI
scheme it registered with the operating system

Dieter Gollmann June 18, 2021 21/88

com.example.app

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Redirect URLs for Native Apps

• In order to support a wide range of types of native apps,
your server will need to support registering three types of
redirect URLs, each to support a slightly different use case
• Some platforms, . . . , allow apps to register a custom URL

scheme which will launch the app whenever a URL with
that scheme is opened in a browser or another app
• Supporting redirect URLs with a custom URL scheme

allows clients to launch an external browser to complete
the authorization flow, and then be redirected back to the
application after the authorization is complete
• App devs should choose a URL scheme that is globally

unique, and one which they can assert control over
• https://www.oauth.com/oauth2-servers/oauth-
native-apps/redirect-urls-for-native-apps/

Dieter Gollmann June 18, 2021 22/88

https://www.oauth.com/oauth2-servers/oauth-native-apps/redirect-urls-for-native-apps/
https://www.oauth.com/oauth2-servers/oauth-native-apps/redirect-urls-for-native-apps/

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

Reverse Domain Name Patterns

• For example, if an app has a corresponding website called
photoprintr.example.org, the reverse domain name
that can be used as their URL scheme would be
org.example.photoprintr
• The redirect URL that the developer would register would

then begin with org.example.photoprintr://
• By enforcing this, you can help encourage developers to

choose explicit URL schemes that won’t conflict with other
installed applications
• https://www.oauth.com/oauth2-servers/oauth-
native-apps/redirect-urls-for-native-apps/

Dieter Gollmann June 18, 2021 23/88

photoprintr.example.org
org.example.photoprintr
org.example.photoprintr://
https://www.oauth.com/oauth2-servers/oauth-native-apps/redirect-urls-for-native-apps/
https://www.oauth.com/oauth2-servers/oauth-native-apps/redirect-urls-for-native-apps/

OAuth 2.0 Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 – Summary

• OAuth is an authorization system
• Authorization server acts an intermediary between clients

and resource owners
• Resource owners grant access, one-time authorization
• Clients that have been granted access get access token

(longer lifetime) from authorization server
• Policy Information Points: resource owner, client (sets

redirect uri)
• Policy Decision Points: resource owner, authorization

server
• How secure is OAuth in practice?

Dieter Gollmann June 18, 2021 24/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

OAuth 2.0 – Return on Experience

Dieter Gollmann June 18, 2021 25/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

OAuth – Renren to Baidu Binding

5. Authorization Response
plus user’s cookie
(session identifier)

�
� �

? 8.
+9

.
re

tr
ie

ve
us

er
’s

B
ai

du
ac

co
un

ti
de

nt
ifi

er

� 	

66

��

6.
+7

.
re

tr
ie

ve
ac

ce
ss

to
ke

n

�
�
�
�Baidu

1. user wants to bind his
Renren & Baidu accounts-

6

�
2. redirect to Baidu with
Authorization Request

�
�
�
�Renren

(client)

�
4. authenticate user and generate

Authorization Response with
redirect uri and Authorization Code

3. Authorization Request
-�

?�
�
�
�(browser)

user

Dieter Gollmann June 18, 2021 26/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Renren-Baidu Account Binding

• User logged in at Renren (RP) wants to bind Renren
account to Baidu (IdP) account
• Renren sends an Auth Request via User Agent (browser)

to Baidu without including state in Auth Request
• No way of binding request to subsequent Auth Response

• Baidu authenticates user and returns an Auth Response
containing a code via the UA to Renren; UA adds cookies
containing user’s session ID
• Renren uses the code to get access token from Baidu;

then retrieves the Baidu account ID using the access token
• Finally Renren binds user’s Renren account ID to user’s

Baidu account ID

Dieter Gollmann June 18, 2021 27/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Renren-Baidu Binding Attack

1. Attacker has an account with Baidu and runs OAuth to get
an Auth Response for the attacker’s ID

2. Attacker posts response as a link to a forum
3. A user with an active Renren session clicks on that link
4. User Agent (browser) will follow redirect uri and redirect

response to Renren
5. Renren retrieves attacker’s Baidu ID and binds it to user’s

Renren ID (steps 6-9 of the binding protocol)

Wanpeng Li and Chris J Mitchell. Security issues in OAuth 2.0 SSO
implementations, ISC 2014

Dieter Gollmann June 18, 2021 28/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Renren-China Mobile Binding Attack

• In this implementation, Auth Request and Auth Response
did contain a state value
• But the same value (always ‘9’) was used for multiple

requests and responses
• An attack similar to the Renren-Baidu attack works, binding

attacker’s China Mobile account to victim’s Renren account

• Lesson: the implementation matters
• Lesson: nonces are a very useful security primitive

Wanpeng Li and Chris J Mitchell. Security issues in OAuth 2.0 SSO
implementations, ISC 2014

Dieter Gollmann June 18, 2021 29/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Generic Ctrip Binding Attack

• Ctrip is a travel agency with a focus on China
• Renren among the supported OAuth 2.0-based IdPs
• In the Renren-Ctrip binding process (Renren acting as IdP

not RP as before), Auth Request and Auth Response did
contain a state value, but previous attack did not work
• Initial HTTP request contained a Ctrip generated user ID
• Replacing the UID in attacker’s request with victim’s UID

caused Ctrip to bind attacker’s IdP account to victim’s Ctrip
account (worked not only for Renren)
• Cause: logic flaws in Ctrip’s implementation

Wanpeng Li and Chris J Mitchell. Security issues in OAuth 2.0 SSO
implementations, ISC 2014

Dieter Gollmann June 18, 2021 30/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

CSRF Vulnerabilities – 2015

• “Mobile application developers have struggled to develop
secure implementations of OAuth 2.0 because their use in
non-web applications conflicts with assumptions made in
the standard”
• Alexa Top 10,000 domains: “25% of websites using OAuth

appear vulnerable to CSRF attacks”
• Major IdPs have published OAuth code samples that omit

the state parameter

E. Shernan et al., More Guidelines Than Rules: CSRF Vulnerabilities
from Noncompliant OAuth 2.0 Implementations, DIMVA 2015

Dieter Gollmann June 18, 2021 31/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

CSRF Vulnerabilities – Remedies

• Specification explicitly asks for CSRF protection (slide 20)
• Developers need guidance to get it right
• Authorization Servers / Identity Providers have leverage
• Advice on good implementations:

• Identity providers should provide correct and complete
developer tools for implementing OAuth

• Do not accept bad implementations
• Identity providers should reject OAuth requests that do not

contain all necessary authenticating tokens

Dieter Gollmann June 18, 2021 32/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Open Redirectors [RFC 6819]

• An open redirector is an endpoint using a parameter to
automatically redirect a user agent to the location specified
by the parameter value without any validation
• If the client may register only part of the redirect URI, an

attacker can use an open redirector at the client to
construct a redirect URI that will pass authorization server
validation but will send the authorization code or access
token to an endpoint under the control of the attacker
• Impact: Attacker could gain access to authorization codes

or access tokens
• Countermeasure: Clients must register full redirect URI

RFC 6819. OAuth 2.0 Threat Model and Security Considerations,
January 2013

Dieter Gollmann June 18, 2021 33/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Open Redirectors in the Media, 2014

• “Serious security flaw in OAuth, OpenID discovered”
• http://www.cnet.com/news/serious-security-
flaw-in-oauth-and-openid-discovered/

• “In terms of severity, Covert Redirect ranks fairly low”
• “It turns out that Covert Redirect has been known about for

some time”
• “The cynic in me suggests that we’re going to see a lot

more flashy “new” vulnerabilities discovered by upstart
security firms and researchers aiming to attract attention to
themselves and their research”
• https:
//www.mcafee.com/blogs/consumer/consumer-
threat-reports/what-is-covert-redirect/

Dieter Gollmann June 18, 2021 34/88

http://www.cnet.com/news/serious-security-flaw-in-oauth-and-openid-discovered/
http://www.cnet.com/news/serious-security-flaw-in-oauth-and-openid-discovered/
https://www.mcafee.com/blogs/consumer/consumer-threat-reports/what-is-covert-redirect/
https://www.mcafee.com/blogs/consumer/consumer-threat-reports/what-is-covert-redirect/
https://www.mcafee.com/blogs/consumer/consumer-threat-reports/what-is-covert-redirect/

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Attacks via Redirect URI

• When an attacker manages to set the redirect uri sent with
the authorization grant, the access token will be sent to the
URI specified by the attacker
• Defences: authorization server checks redirect uri against

• a redirect uri white list created when the client registered at
the authorization server

• the redirect uri used in the first request (assumes the
authorization server handles both requests; requires the
authorization server to keep state)

Dieter Gollmann June 18, 2021 35/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Lassie Come Home, 2013

• www.thecloudcompany.biz offers the possibility to
register your own client
• One of the clients of www.thecloudcompany.biz is a

department of www.thecloudcompany.biz itself
• This client, named example here, runs under the domain of
www.example.thecloudcompany.biz
• Assume this client registers the redirect uri
*.thecloudcompany.biz
• The bad guy registers a client with client id ‘Bad’ and the

redirect uri www.bad.com at www.thecloudcompany.biz

http://blog.intothesymmetry.com/2013/05/oauth-2-attacks-introducing-devil-wears.html

Dieter Gollmann June 18, 2021 36/88

www.thecloudcompany.biz
www.thecloudcompany.biz
www.thecloudcompany.biz
www.example.thecloudcompany.biz
*.thecloudcompany.biz
www.bad.com
www.thecloudcompany.biz
http://blog.intothesymmetry.com/2013/05/oauth-2-attacks-introducing-devil-wears.html

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Lassie Come Home – The Attack, 2013

• Bad guy sends this link to a resource owner:
https://www.thecloudcompany.biz/oauth/authorize?
client_id=example&response_type=token&redirect_uri
=https://www.thecloudcompany.biz%2Foauth/authorize?
%2Fauthorize%3Fclient_id=
Bad%26response_type=token%26redirect_uri=http://
www.bad.com
• When the resource owner clicks on this link, the access

token is sent to www.bad.com because the redirect uri
https://www.thecloudcompany.biz%2Foauth%2Fauthorize
%3Fclient_id=Bad%26response_type=token
%26redirect_uri=http://www.bad.com matches the
redirect uri *.thecloudcompany.biz of client ‘example’

http://blog.intothesymmetry.com/2013/05/oauth-2-attacks-introducing-devil-wears.html

Dieter Gollmann June 18, 2021 37/88

www.bad.com
*.thecloudcompany.biz
http://blog.intothesymmetry.com/2013/05/oauth-2-attacks-introducing-devil-wears.html

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Another Redirect URI Bug, 2014

• The redirect uri in
https://graph.facebook.com/oauth/authorize is not
validated correctly
• One can bypass the redirect uri validation with /.\.\../,

which might result in stealing the authorization code of a
Facebook registered OAuth client
• For example, in https://parse.com/account there is the

option to link an account with Facebook via
https://www.facebook.com/dialog/oauth?response_type
=code&client_id=506576959379594&redirect_uri=
https%3A%2F%2Fparse.com%2Fauth%2Ffacebook
%2Fcallback&state=420c2f177072bc328309aab640fa0e91
41b0f7de2c1f7d81&scope=email

http://blog.intothesymmetry.com/2014/04/oauth-2-how-i-have-hacked-facebook.html

Dieter Gollmann June 18, 2021 38/88

https://graph.facebook.com/oauth/authorize
https://parse.com/account
http://blog.intothesymmetry.com/2014/04/oauth-2-how-i-have-hacked-facebook.html

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Exploit, 2014

• Exploit uses the request
https://www.facebook.com/dialog/oauth?response_type
=code&client_id=506576959379594&redirect_uri=
https%3A%2F%2Fparse.com%2Fauth%2Ffacebook
%2Fcallback%2F.\.\../.\.\../asanso&
state=420c2f177072bc328309aab640fa0e91
41b0f7de2c1f7d81&scope=email
• If this redirect uri is wrongly accepted, code and state are

passed to
https://parse.com/auth/asanso?code=CODE#_=_
• From the blog: “ ”

http://blog.intothesymmetry.com/2014/04/oauth-2-how-i-have-hacked-facebook.html

Dieter Gollmann June 18, 2021 39/88

https://parse.com/auth/asanso?code=CODE#_=_
http://blog.intothesymmetry.com/2014/04/oauth-2-how-i-have-hacked-facebook.html

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

From the Blog

Q. Why is the browser changing
”https://gist.github.com/auth/facebook/
callback/.\.\../.\.\../.\.\../asanso/
a2f05bb7e38ba6af88f8” to https:
//gist.github.com/asanso/a2f05bb7e38ba6af88f8

A. Is this a question :) ?

C. I can only guess that the answer has something to do with
the way illegal backslash characters in the URI are handled

https://hackerone.com/reports/405100

Dieter Gollmann June 18, 2021 40/88

https://gist.github.com/asanso/a2f05bb7e38ba6af88f8
https://gist.github.com/asanso/a2f05bb7e38ba6af88f8
https://hackerone.com/reports/405100

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Path Separators

• Most browsers treat both / and \ as path separators
• When a URL is entered in the address bar, most browsers

automatically convert \ to /
• Desired behaviour according to the URL standard

• However, URL validator and browser may disagree

Dieter Gollmann June 18, 2021 41/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

The Evil Slash Trick

• Example: https://attacker.com\@benign.com
• Parser does not treat \ as path separator but browser does

• Parser extracts domain benign.com
• Browser converts \ to / and gets domain attacker.com

from https://attacker.com/@benign.com,
• Parser treats \ as path separator, but the browser does not

• Parser converts \ to / and gets the domain attacker.com
• Browser extracts domain benign.com

• Bug in Safari, 2019:
• When handling a redirection, Safari allows \ in user-info

and does not treat it as a path separator
• When parser treats \ as path separator and retains it in the

output, Safari will be redirected to attacker.com
Xianbo Wang et al., Make Redirection Evil Again: URL Parser Issues
in OAuth
https://www.blackhat.com/asia-19/briefings/schedule/#make-redirection-evil-again---
url-parser-issues-in-oauth-13704

Dieter Gollmann June 18, 2021 42/88

benign.com
attacker.com
https://attacker.com/@benign.com
attacker.com
benign.com
attacker.com
https://www.blackhat.com/asia-19/briefings/schedule/#make-redirection-evil-again---
url-parser-issues-in-oauth-13704

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Leaking Tokens with Redirect URI, 2016

• As the login with Facebook does not have a dedicated
directory like gratipay.com/facebook/callback it is
possible to still steal access tokens:
https://www.facebook.com/dialog/oauth?response_type
=code&client_id=144124902390407&redirect_uri=
https://gratipay.com/˜attacka/&
scope=public_profile%2Cemail%2Cuser_friends&
state=mjemgKNb0s24lbEqBcyVqDEVNoYDYs
• The token will be sent to the attacker’s profile /˜attacka,

which in turn may point to example.com
• If a user clicks on that link the referrer header will send the

tokens
• Fix: add a redirect uri like
https://www.gratipay.com/facebook/callback

https://hackerone.com/reports/140432
Dieter Gollmann June 18, 2021 43/88

gratipay.com/facebook/callback
example.com
https://www.gratipay.com/facebook/callback
https://hackerone.com/reports/140432

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Stealing Users OAUTH Tokens via Redirect uri, 2018

• On https://accounts.bistudio.com the redirect uri
given is not properly validated; it is hence possible to
bypass the filter and to exfiltrate users’ OAUTH tokens
• On clicking on Login on https://xbox.dayz.com an

OAUTH request is triggered to accounts.bistudio.com;
the endpoint checks if the redirect uri starts with
https://xbox.dayz.com but does not check the ending
bits; it is thus possible to inject anything after that
• For example, https://xbox.dayz.comtest.com will pass

the server’s filter and a redirect with the code and state
values is performed to this URL

https://hackerone.com/reports/405100

Dieter Gollmann June 18, 2021 44/88

https://accounts.bistudio.com
https://xbox.dayz.com
accounts.bistudio.com
https://xbox.dayz.com
https://xbox.dayz.comtest.com
https://hackerone.com/reports/405100

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Redirect uri Bypass Using IDN Homograph Attack, 2020

• SEMrush OAuth implementation fails to properly validate
the value of redirect uri parameter which was bypassed
using IDN homograph attack which results in leaking the
user’s access token to an attacker-controlled domain name
• IDN homograph attack exploits the fact that different

characters look alike, e.g. the Cyrillic letter e and Latin e
• Attacker registers a homograph for semrush.com as its

domain
• Attack succeeds when a liberal matching algorithm

checking the redirect uri treats homographs as equivalent
• A liberal matching algorithm may accept sémrush.com,
sêmrush.com, sèmrûsh.com, šemrush.com for
semrush.com

https://hackerone.com/reports/861940
Dieter Gollmann June 18, 2021 45/88

semrush.com
semrush.com
https://hackerone.com/reports/861940

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Proof of Concept

• Authenticate to your account then browse to
https://oauth.semrush.com/oauth2/authorize?
response_type=code&scope=user.info,projects.info,
siteaudit.info&client_id=seoquake&redirect_uri=
https://oauth.šemrush.com/oauth2/success
• Once you approve the SEMrush application, your OAuth

code will be sent to oauth.šemrush.com, i.e. to
oauth.xn--emrush-9jb.com since the browser will
translate it to the punycode version
• Punycode used in DNS to represent IDNs with characters

(A-Z, 0-9)
• Attacker just needs to register the domain name
xn--emrush-9jb.com

https://hackerone.com/reports/861940

Dieter Gollmann June 18, 2021 46/88

oauth.xn--emrush-9jb.com
xn--emrush-9jb.com
https://hackerone.com/reports/861940

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Spring Security – Attacking OAuth, 2020

• Redirection attacks rely on the fact that the OAuth standard
does not fully describe the extent to which the redirect uri
must be specified; this is by design
• Thus some implementations of OAuth allow for a partial

redirect uri
• Let an application developer registers the redirect uri
*.cloudapp.net with the authorization server
• This would be valid for app.cloudapp.net but also for
evil.cloudapp.net
• cloudapp.net is a part of Microsoft’s Windows Azure

platform and allows any developer to host a subdomain
under it to test an application

https://www.baeldung.com/spring-security-oauth-
attack-redirect

Dieter Gollmann June 18, 2021 47/88

*.cloudapp.net
app.cloudapp.net
evil.cloudapp.net
cloudapp.net
https://www.baeldung.com/spring-security-oauth-attack-redirect
https://www.baeldung.com/spring-security-oauth-attack-redirect

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Spring Security – Attacking OAuth, 2020

• The attacker creates the link
GET /authorize?response_type=code&client_id=
{apps-client-id}&state={state}&redirect_uri=
https%3A%2F%2Fevil.cloudapp.net%2Fcb HTTP/1.1
• When a user clicks on this link, the authorization server

receives a URL with the app’s Client ID and a redirect uri
pointing back to the attacker’s endpoint
• The server will accept the redirect uri as valid, authenticate

the user and ask for consent w.r.t. the client app
• It will finally redirect back into the evil.cloudapp.net

subdomain, passing the authorization code to the attacker
• The attacker can use this authorization code to receive an

access token for the resource owner’s protected resources
https://www.baeldung.com/spring-security-oauth-
attack-redirect

Dieter Gollmann June 18, 2021 48/88

evil.cloudapp.net
https://www.baeldung.com/spring-security-oauth-attack-redirect
https://www.baeldung.com/spring-security-oauth-attack-redirect

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Public Clients & Redirection Endpoints

• Clients incapable of maintaining the confidentiality of their
credentials (e.g., clients executing on the device used by
the resource owner, such as an installed native application
or a web browser-based application), incapable of secure
client authentication via any other means. [RFC 6749]
• Step 1: native application running on the end device, such

as a smartphone, issues an OAuth 2.0 Authorization
Request via the browser/operating system
• The redirect uri registered by the native app typically uses

a custom URI scheme
• Request happens through a secure API that cannot be

intercepted, though it may potentially be observed in
advanced attack scenarios

Dieter Gollmann June 18, 2021 49/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Authorization Code Interception Attack [RFC 7636]

end device (e.g., smartphone)

(6) access token
�

-

(5) authorization
grant

malicious
app

authorization
server

legitimate
OAuth 2.0 app

�
-

(3) authz code

(2) authz request

B
B
B
B
B
BBM

(4)
authz
code

6
(1)

authz
request

?

operating system
browser

Dieter Gollmann June 18, 2021 50/88

OAuth 2.0 Insecurity Reading Security Protocol Specifications is Difficult and Error Prone

Authorization Code Interception Attack

• Step 2: the request is forwarded to the OAuth 2.0
authorization server
• OAuth 2.0 requires the use of TLS, so this communication

is protected by TLS and cannot be intercepted
• Step 3: the authorization server returns the authorization

code to the resource owner’s device
• Step 4: the authorization code is returned to the native app

via the redirect uri that was provided in step (1)
• A malicious app may register itself as a handler for the

custom scheme registered by the legitimate app
• The malicious app may then receive the authorization code

in step (4); the attacker can then request and obtain an
access token

Dieter Gollmann June 18, 2021 51/88

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

Lessons

Dieter Gollmann June 18, 2021 52/88

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

Problem Spots

• Understanding and applying proper CSRF protection
• Understanding the use of state parameter in a

challenge-response authentication pattern
• Setting policies: wildcard in redirect uri, open redirectors,

custom URI schemes?
• Definition of ‘match’ when comparing the redirect uri in a

request with a registered redirect uri
• Parsing strings

Dieter Gollmann June 18, 2021 53/88

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

Remedies

• Problem spots 1 & 2 relate to general security knowledge
• It is not the task of a standard to give tutorials on security

basics
• Good code samples are a service to the community

• Identity providers can set good examples
• Copy-and-paste will raise security levels, even when

programmers are security-unaware
• Ultimately, it would be better to have some security

expertise when implementing security features

Dieter Gollmann June 18, 2021 54/88

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

Custom URIs

• Custom URIs must be locally unique on the end device
• If an app developer wants to use the same URI on all end

devices, custom URIs must be globally unique
• Achieved by the reverse domain name pattern, as long as

all app developers are honest
• Malicious app developers may cheat and pick a custom

URI already used by someone else
• Defences?

• Operating system on end device could check for duplicates
• User might be asked to decide in case of a conflict

• Can this work in practice?

Dieter Gollmann June 18, 2021 55/88

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

Remedies

• Problem spots 3 & 4 relate to access control
• When registering a redirect uri, the client sets a policy to

be enforced by the authorization server
• Wildcards in the redirect uri were included as a feature

• Gives clients some flexibility in their choice of endpoints
• Wildcards in TLS certificates, e.g. for *.google.com
• Use of wildcards is discouraged today

• IdPs may enforce policies on redirect uri’s at registration
time or warn clients about dangerous practices

“A knife sharp enough to cut meat is sharp enough to cut your
finger”

[Fred Schneider quoting David Parnas]

Dieter Gollmann June 18, 2021 56/88

*.google.com

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

On URL Matching [RFC 6749]

• When a redirection URI is included in an authorization
request, the authorization server MUST compare and
match the value received against at least one of the
registered redirection URIs
• If the client registration included the full redirection URI,

the authorization server MUST compare the two URIs
using simple string comparison

• Design decisions on “match”:
• Matching prefix or identical strings?
• How far to take Postel’s Law ”be liberal in what you accept”?

• OAuth 2.0 matching has become less liberal over time

Dieter Gollmann June 18, 2021 57/88

OAuth 2.0 Lessons Reading Security Protocol Specifications is Difficult and Error Prone

The Full Picture

• Problem spot 5 relates to software security
• Writing parsers can be “difficult and error-prone”
• Momot et al., The Seven Turrets of Babel: A Taxonomy of

LangSec Errors and How to Expunge Them, SecDev 2016
• Vulnerabilities can be product specific and technical

knowledge may have a short time-to-live
• Challenge for developers: up-to-date view on threat

landscape
• “In order to have a safe implementation it is important to

understand what is OAuth about and to be involved in the
“OAuthsphere” (OAuth mailing list, blogs, etc)”
http://blog.intothesymmetry.com/2013/05/oauth-
2-attacks-introducing-devil-wears.html
• Challenge for researchers: recognizing threat patterns

Dieter Gollmann June 18, 2021 58/88

http://blog.intothesymmetry.com/2013/05/oauth-2-attacks-introducing-devil-wears.html
http://blog.intothesymmetry.com/2013/05/oauth-2-attacks-introducing-devil-wears.html

eCard Reading Security Protocol Specifications is Difficult and Error Prone

eCard Protocols

Dieter Gollmann June 18, 2021 59/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Background – eHealth

• German eCard strategy for the health sector in the 2000s
• Based on authentication, qualified electronic signatures,

and the use of smart card based tokens
• Privacy issues are addressed in eCard applications but

remain a key concern for citizens
• Politically charged atmosphere where certificational

weaknesses have to be taken very seriously
• We had analyzed the security protocols within a project

assessing the security of the German health card

Jan Meier, DG. Caught in the Maze of Security Standards. ESORICS
2010

Dieter Gollmann June 18, 2021 60/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Background – Architecture

• A security architecture relates the overall security goals of
an application to the specific security services provided by
the individual components and security protocols
• In eCard applications, authentication is one goal; it can be

reached in multiple ways
• The architecture typically references standards to specify

the exact method; these standards define protocols and
cryptographic parameters
• Having multiple standards frequently causes cross-

dependencies, gaps, or conflicts between requirements

Dieter Gollmann June 18, 2021 61/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Intentional Underspecifications

• A standard should not constrain possible implementations
when a desired behaviour can be achieved in multiple ways
• Implementation details are therefore left open
• Protocol analysis at the level of the specification in the

standard the may then flag a failure, although simple
defences are available at the implementation level
• Protocol analysis therefore needs more than the protocol

specification and also information on the implementation
• Dual of the situation where an abstract protocol has been

verified to be secure, but an implementation introduces
vulnerabilities

• Here, the abstract protocol would be insecure and the
implementation plugs the gaps

Dieter Gollmann June 18, 2021 62/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Smart Cards

• Smart cards do not have a user interface and cannot
initiate an action; they can only react
• A card reader has to send commands to the smart card

and wait for a response
• Protocols can be built from such request/response pairs
• Commands can manipulate the internal state of a card
• Based on the internal state, the card may reject commands

sent by the reader
• We will examine authentication between smart card and

reader

Dieter Gollmann June 18, 2021 63/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Security Protocols

• The following five standards or standard related
documents are relevant for eCard projects
• Each document resides on its own abstraction layer and

addresses different issues
• ISO/IEC 9798 series
• BSI TR-03116 Technische Richtlinie für eCard-Projekte der

Bundesregierung
• ISO/IEC 7816 series
• CWA14890-1
• Common Criteria

Dieter Gollmann June 18, 2021 64/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

ISO/IEC 9798 Series

• Describes entity authentication protocols for symmetric key
cryptography and asymmetric key cryptography
• Application and technology independent, protocols are

described on an abstract level.
• Gives detailed descriptions of the actions communication

partners have to perform
• Does not specify message formats, cryptographic

algorithms, and key lengths
• Hence, these standards do not define direct blueprints for

implementation.
• Referenced in a standard for smart cards as secure

signature creation devices and in the eCard guideline
documentation

Dieter Gollmann June 18, 2021 65/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

BSI TR-03116

• Recommendations on the strength of cryptographic
algorithms and key lengths published by the German
Federal Office for Information Security
• E.g., life-spans for encryption mechanisms (April 2009!)

• Two key triple DES (2KTDES) prohibited in eCard projects
after 2009

• Three key triple DES could be used until the end of 2013
• No migration strategies or ways to adapt existing protocol

to eCard requirements
• Does not assist application designers in adapting protocols

from ISO/IEC 9798 to smart cards

Dieter Gollmann June 18, 2021 66/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

ISO/IEC 7816 Series

• Standardizes interactions between smart cards and their
environment
• Includes electrical interfaces, position of connectors,

dimensions and commands
• ISO/IEC 7816-4 specifies byte sequences to invoke

commands, transmission of command data (parameters),
and the status flags a command could possibly return
• Command processing is left unspecified
• Tied to smart card technology but independent of the

applications realized with the help of smart cards

Dieter Gollmann June 18, 2021 67/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

ISO/IEC 7816-4

• Commands relevant for authentication protocols:
• Manage Security Environment (MSE): sets information

about the cryptographic algorithms and keys for later use
• Get Challenge (GetChall): requests a challenge from

the smart card; card stores the last challenge requested
• Read Binary (ReadB): requests the content of a file

given in the command data
• Internal Authenticate: generates an authentication

token from the command data
• External Authenticate (ExAuth): transfers an

authentication token from an external party
• Mutual Authenticate (MutAuth) combines Internal
Authenticate and External Authenticate

Dieter Gollmann June 18, 2021 68/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

CWA14890-1

• Primarily an interoperability standard maintained by the
European Committee for Standardization
• Builds on ISO/IEC 7816-4 as it uses smart card commands

when specifying protocols
• Not intended for a specific application, but refers

specifically to secure signature creation devices
• Does not include a security argument, nor does it give a

reference to such a security argument
• The protocol specification for mutual authentication defines

2KTDES as the encryption algorithm
• But 2KTDES is prohibited in BSI TR-03116

• Unlike BSI TR-03116, no statements on the security or
lifespan of the protocols

Dieter Gollmann June 18, 2021 69/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Common Criteria

• Common Criteria protection profiles are relevant for eCard
applications
• Indicate which tests eCard components have to pass in

order to get certified
• However, designers cannot extract requirements that, say,

smart card commands have to fulfil
• They must trust smart card producers that cards are

suitable for the intended task

Dieter Gollmann June 18, 2021 70/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Authentication with Key Establishment

• Card and card reader share two long term symmetric keys
for encryption, decryption and integrity protection
• Goal #1: Provide evidence that smart card and reader

know previously shared secret keys and thus are legitimate
communication partners
• Goal #2: Smart card and reader agree on two session keys

to protect subsequent communications
• One key for encryption/decryption operations, the second

key for computing message authentication codes (MAC)
• Encryption method in CWA 14890-1: 2KTDES in cipher

block chaining mode with fixed initialization vector 0
• Length of challenge: 64 bit
• The procedure to establish session keys is defined and the

length of the key derivation data is set to 256 bit
• Gives all the information needed to integrate the protocol

into an application
Dieter Gollmann June 18, 2021 71/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Authentication with Key Establishment

Reader Card

From CWA14890-1, message order from top to bottom
Dieter Gollmann June 18, 2021 72/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Key Derivation

• Smart card and reader have stored both their own and
received key derivation data, KDD.c and KDD.r
• KDD.c and KDD.r are random 256 bit strings

• Both parties compute KDD.rc = KDD.r ⊕ KDD.c
• Then, two 32 bit counters are appended to KDD.rc; this

gives KDD.rc1 and KDD.rc2
• First counter has value 1, the second has value 2

• Both parties compute SHA-1(KDD.rc1) and
SHA-1(KDD.rc2)
• Session keys are derived from these two hash values

Dieter Gollmann June 18, 2021 73/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Don’t Trust Your Inputs

• CWA 14890-1 includes two mandatory checks:
• Does the challenge received equal the challenge stored?
• Does the message received include the correspondent’s

serial number (“self”)?
• Let a rogue card respond with the serial number SN.r of

the reader she is communicating with
• This would facilitate a reflection attack

Dieter Gollmann June 18, 2021 74/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Reflection Attack

• Attacker wants to reply to GetChall with the Rand.r the
reader will use in MutAuth
• Attacker uses the command data from the reader’s
MutAuth command as its final message
• Reader will accept its own command data as a valid

response if Rand.c = Rand.r
• In this case: Rand.c || SN.c = Rand.r || SN.r

• Attacker does not know KDD.r but has reflected the
reader’s data so KDD.c = KDD.r and KDD.c ⊕ KDD.r = 0
• For unpredictable 8 byte challenges, on average 263

attempts for an attack to succeed
• Attacker would then learn all four keys 56 bit keys (224

bits) needed for encryption and MAC computations

Dieter Gollmann June 18, 2021 75/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

On the Use of XOR

• The rationale for using XOR would be mistrust of the
communication partner’s random number generator.
• However, when the attacker can reflect (unknown) random

data back to its creator, XORing these values can result in
a loss of security.
• The XOR operation does not only weaken protocol security

it is also unnecessary
• The key derivation data KDD.r and KDD.c could be fed into

a hash function and still both parties would not have to
trust their partner’s random number generator

Dieter Gollmann June 18, 2021 76/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Challenge-Response Authentication Protocol

• A device may have to authenticate itself to a smart card,
e.g. by proving knowledge of certain cryptographic keys
• Authentication success is stored in the smart card’s state

as long as the card is connected to the reader or the card
explicitly removes this information from its state
• A simple challenge-response protocol will do
• Can be obtained by removing the Read Binary command

pair and replacing the Mutual Authentication with External
Authenticate in the previous protocol

Dieter Gollmann June 18, 2021 77/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Challenge-Response Authentication Protocol

Reader Card

Rand.Ver ∈ {x|0 ≤ x ≤ 2n − 1}

Get Challenge (n)

Manage Security Environment (

key, operation)

External Authenticate (

Rand.Ver)

Adapted from ISO/IEC 9798-2, message order from top to bottom
Dieter Gollmann June 18, 2021 78/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Differences to ISO/IEC 9798-2

• This protocol is related to the unilateral two pass
authentication protocol from ISO/IEC 9798-2
• The protocol specification in ISO/IEC 9798-2 includes an

optional identifier to prevent reflection attacks
• In scenarios where reflection attacks cannot occur, the

identifier can be omitted
• None of the standards introduced earlier discusses in

which situations reflection attacks are impossible

Dieter Gollmann June 18, 2021 79/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Short Challenges

• In the protocol from ISO/IEC 9798, the verifier starts the
protocol by sending a random challenge
• In the smart card protocol above, the card reacts to a

command sent by the reader and has to protect itself from
attackers that alter command sequences
• The attacker could set the length of the challenge

requested in GetChall command to one byte, limiting the
smart card to choose the challenge from 256 possibilities
• Smart cards could reject requests for random numbers that

are too short, but checking GetChall command data is not
part of the design pattern in CWA 14890-1

Dieter Gollmann June 18, 2021 80/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Reflection Attack

• Attacker sends a MSE command to the smart card setting
the shared key for encryption in an IntAuth command
• Then, requests Rand.c from the smart card with GetChall
• Rand.c is then included as command data in an IntAuth

command, to which the smart card replies with the
encrypted challenge
• Next, the attacker sends a MSE command to the smart card

setting the same symmetric key for use with ExtAuth
• Then, the attacker adversary sends the encrypted

challenge with ExtAuth to the smart card
• The card will accept the encrypted challenge and thus

believe that the attacker is a legitimate reader

Dieter Gollmann June 18, 2021 81/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

Reflection Attack – Defences

• The smart card cannot trust the reader until successful
completion of the authentication protocol run
• Smart cards must thus not accept extra commands from

the reader before authentication is assured
• Defences in the smart card operating system without

changing the protocol
• Erase random values stored in the card’s internal state

whenever a MSE command arrives
• Restrict use of symmetric keys so that they could either be

used for encryption or decryption but not for both
• A protocol automaton could detect commands arriving out

of sequence in a protocol run
• Slightly change the protocol and include the serial number

of the encrypting device when encrypting Rand.c

Dieter Gollmann June 18, 2021 82/88

eCard Reading Security Protocol Specifications is Difficult and Error Prone

eCard – Conclusions

• Several standards are crucial for protocol security in eCard
applications
• Each standard has its own remit and abstraction layer
• These standards hardly address restrictions or

requirements they impose on other standards
• As a result, application designers can take all the right

turns and still get lost in the maze of security standards
• Given our observed protocol design vulnerabilities,

application designers would require security expertise to
successfully negotiate this maze
• Adhering to standards will not automatically result in

secure applications

Dieter Gollmann June 18, 2021 83/88

Security Sources Reading Security Protocol Specifications is Difficult and Error Prone

Security Sources in the Web

Dieter Gollmann June 18, 2021 84/88

Security Sources Reading Security Protocol Specifications is Difficult and Error Prone

A Grumpy Old Man?

• Security research needs a lot of very diverse sources,
most of which can be found in the web
• I have been noting that students struggle to critically

evaluate the sources they find in the web
• The problem seems to have become worse
• May be due to the distance learning mode of the past year
• May be specific to security
• May be my own distorted view of the world
• . . . but I am not the only making this observation

Dieter Gollmann June 18, 2021 85/88

Security Sources Reading Security Protocol Specifications is Difficult and Error Prone

Horses for Courses

• The first question to ask yourself: “For whom has this
article been written?”
• For the general public?

• Explanation of a national e-identity scheme
• For potential investors?

• Be very optimistic about potential applications
• For developers?

• Explain the world via APIs
• For a project application/review?

• Strong on motivation and significance
• For security researchers?

Dieter Gollmann June 18, 2021 86/88

Security Sources Reading Security Protocol Specifications is Difficult and Error Prone

Don’t Trust Your Inputs

• Statements that were true once may no longer be true
• Science / technology / applications may have moved on

• Datasets used for ML research may no longer reflect
current use patterns
• An academic idea may never have left the lab
• Anticipated applications many not have materialized
• Peer review is as good as the quality of the peers

• Be doubly cautious with security papers published in
non-security venues

• The analysis of the state-of-the art may be too limited
• Security is a fashion industry; a literature search based on

search terms may not get you very far

Dieter Gollmann June 18, 2021 87/88

Security Sources Reading Security Protocol Specifications is Difficult and Error Prone

Don’t trust what I told you. Verify!

Dieter Gollmann June 18, 2021 88/88

	Preliminaries
	OAuth 2.0
	OAuth 2.0 Insecurity
	OAuth 2.0 Lessons
	eCard
	Security Sources

