Optimal Boolean Functions

Irene Villa

UiB - Universitetet i Bergen Selmer center

Finse 2018

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Communicate a secret message

Kロトメ部トメミトメミト ミニのQC

Communicate a secret message

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Block ciphers

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Vectorial Boolean Function

Given n*,* m integers, an (n*,* m)-function is a function that transform a sequence of n bits into a sequence of m bits,

KO K K Ø K K E K K E K V K K K K K K K K K

Vectorial Boolean Function

Given n*,* m integers, an (n*,* m)-function is a function that transform a sequence of n bits into a sequence of m bits,

$$
F: \mathbb{F}_2^n \to \mathbb{F}_2^m \text{ with } \mathbb{F}_2 = \{0, 1\}
$$

$$
F(x_1, \dots, x_n) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}, \ f_i: \mathbb{F}_2^n \to \mathbb{F}_2
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Vectorial Boolean Function

Given n*,* m integers, an (n*,* m)-function is a function that transform a sequence of n bits into a sequence of m bits,

$$
F: \mathbb{F}_2^n \to \mathbb{F}_2^m \text{ with } \mathbb{F}_2 = \{0, 1\}
$$

$$
F(x_1, \dots, x_n) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}, \ f_i: \mathbb{F}_2^n \to \mathbb{F}_2
$$

If $n = m$ an equivalent representation (univariate polynomial)

$$
\boxed{F:\mathbb{F}_{2^n}\to\mathbb{F}_{2^n}}\qquad F(x)=\sum_{i=0}^{2^n-1}c_ix^i,\ c_i\in\mathbb{F}_{2^n}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Symmetric ciphers are designed by appropriate composition of nonlinear Boolean functions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \rightarrow in **block ciphers** the security depends on S-boxes

Symmetric ciphers are designed by appropriate composition of nonlinear Boolean functions

 \rightarrow in **block ciphers** the security depends on S-boxes

Most cryptographic attacks ⇓ mathematical properties that measure the resistance of the S-box

KORKARYKERKER OQO

Symmetric ciphers are designed by appropriate composition of nonlinear Boolean functions

 \rightarrow in **block ciphers** the security depends on S-boxes

Most cryptographic attacks ⇓ mathematical properties that measure the resistance of the S-box

KORKARYKERKER OQO

- \blacktriangleright differential attack
- \blacktriangleright linear cryptanalysis

\triangleright DIFFERENTIAL ATTACK

Kロトメ部トメミトメミト ミニのQC

\triangleright DIFFERENTIAL ATTACK

how differences in an input can affect the resulting difference at the output.

$$
\begin{array}{ccc} x & \to & F \\ x+a & \to & F \end{array} \rightarrow \begin{array}{ccc} y \\ y \\ y + b \end{array}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

^I DIFFERENTIAL ATTACK ⇒ differential *δ*-uniformity how differences in an input can affect the resulting difference at the output.

$$
\begin{array}{ccc}\n & x & \rightarrow & \begin{bmatrix} \\ \end{bmatrix} & \rightarrow & y\\ \times + a & \rightarrow & \begin{bmatrix} \\ \end{bmatrix} & \rightarrow & y + b\\ \delta = \max_{a,b \in \mathbb{F}_2^n : a \neq 0} |\{x \in \mathbb{F}_2^n : F(a+x) - F(x) = b\}| \end{array}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

► DIFFERENTIAL ATTACK \Rightarrow differential *δ*-uniformity how differences in an input can affect the resulting difference at the output.

$$
\begin{array}{ccc}\n & x & \rightarrow & \begin{bmatrix} \\ \end{bmatrix} & \rightarrow & y\\ \nx + a & \rightarrow & \begin{bmatrix} \\ \end{bmatrix} & \rightarrow & y + b\\ \n\delta = \max_{a,b \in \mathbb{F}_2^n : a \neq 0} |\{x \in \mathbb{F}_2^n : F(a+x) - F(x) = b\}| \n\end{array}
$$

► best resistance when $\delta = 2^{n-m}$: PERFECT NONLINEAR (PN) *n* even and $m \leq \frac{n}{2}$

KORK ERKER ADAM ADA

if $n = m$ smallest $\delta = 2$: ALMOST PERFECT NONLINEAR (APN)

EINEAR CRYPTANALYSIS

K ロ K K 日 K K ミ K X E K Y B K Y Q Q C

\triangleright LINEAR CRYPTANALYSIS

finding affine approximations to the action of a cipher

 $g:\mathbb{F}_2^n\rightarrow\mathbb{F}_2$ is affine if degree is at most 1 $(g\in\mathcal{A})$

 $d_H(f,g) = |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}|$ (Hamming distance)

 \triangleright LINEAR CRYPTANALYSIS \Rightarrow nonlinearity NL finding affine approximations to the action of a cipher

 $g:\mathbb{F}_2^n\rightarrow\mathbb{F}_2$ is affine if degree is at most 1 $(g\in\mathcal{A})$

 $d_H(f,g) = |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}|$ (Hamming distance)

$$
NL(F) = \min_{g \in \mathcal{A}, \lambda \in \mathbb{F}_2^{m*}} d_H(\lambda \cdot F, g) \leq 2^{n-1} - 2^{\frac{n}{2}-1}
$$

 \triangleright LINEAR CRYPTANALYSIS \Rightarrow nonlinearity NL finding affine approximations to the action of a cipher

 $g:\mathbb{F}_2^n\rightarrow\mathbb{F}_2$ is affine if degree is at most 1 $(g\in\mathcal{A})$

 $d_H(f,g) = |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}|$ (Hamming distance)

$$
NL(F) = \min_{g \in \mathcal{A}, \lambda \in \mathbb{F}_2^{m*}} d_H(\lambda \cdot F, g) \leq 2^{n-1} - 2^{\frac{n}{2}-1}
$$

- \triangleright best resistance when NL is maximum: BENT *n* even and $m \leq \frac{n}{2}$
- ► if $n = m$: $N L(F) \le 2^{n-1} 2^{\frac{n-1}{2}}$ ALMOST BENT (AB)

KORKAR KERKER SAGA

Most general equivalence relation known that preserves *δ* and NL

Graph of a function $F: \Gamma_F = \{(x, F(x)) : x \in \mathbb{F}_2^n\}$

 F_1 and F_2 are CCZ-equivalent if $\mathcal{L}(\Gamma_{F_1}) = \Gamma_{F_2}$, for an affine permutation \mathcal{L} .

OPTIMAL BOOLEAN FUNCTIONS

$$
F:\mathbb{F}_2^n\to\mathbb{F}_2^n
$$

or equivalently

$$
\overline{F}: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \, \Big| \, F(x) = \sum_{i=0}^{2^n-1} c_i x^i.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

we are interested in APN and AB functions

OPTIMAL BOOLEAN FUNCTIONS

$$
\boxed{\digamma: \mathbb{F}_2^n \to \mathbb{F}_2^n}
$$

or equivalently

$$
\overline{F}: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \, \Big| \, F(x) = \sum_{i=0}^{2^n-1} c_i x^i.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

we are interested in APN and AB functions

Other applications of APN and AB functions:

- coding theory
- sequence design
- combinatorial analysis

On APN and AB functions $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

- \triangleright classification of APN, AB f. is an hard open problem
- ► complete classification known only for $n \leq 5$
- \triangleright few infinite classes of APN and AB functions known
	- 6 infinite families of power APN f. (4 are also AB) (for example $x^{2^{i}+1}$ with $gcd(i, n)=1$)
	- 11 infinite families of quadratic APN f. (4 are also AB)

KELK KØLK VELKEN EL 1990

- reven for small *n* there are too many vectorial Boolean functions to just use a purely computer search
- \triangleright just one APN permutation is known in even dimension

We have to come up with new methods to construct new optimal functions and to analyse them

- \triangleright combination of theoretic results and computational insights to find new families
- \triangleright studying equivalence relations between already known functions
- \triangleright finding new invariant of the CCZ-equivalence to easily prove CCZ-inequivalent functions

 \triangleright finding more general equivalence relations that preserve optimal properties

- \triangleright many known APN functions in small dimensions are of the form $F(x) = L_1(x^3) + L_2(x^9)$, with L_1, L_2 linear functions:
	- \bullet x^3 and $x^3 + \mathit{Tr}(x^9)$ are infinite families of APN functions
	- for $n = 8$ out of 23 APN functions (2008) 17 are of this form

- \triangleright many known APN functions in small dimensions are of the form $F(x) = L_1(x^3) + L_2(x^9)$, with L_1, L_2 linear functions:
	- \bullet x^3 and $x^3 + \mathit{Tr}(x^9)$ are infinite families of APN functions
	- for $n = 8$ out of 23 APN functions (2008) 17 are of this form
- ightheoretical properties and restrictions on L_1 and L_2 for such function to be APN in \mathbb{F}_{2^n} :
	- if $F(x)$ is APN for an even *n* then $F(a) \neq 0$ for any $a \neq 0$;
	- \bullet if $F(x)$ is APN for $n=6m$ then $L_1(a^3\beta)\neq 0$ for any $a\neq 0$ and $\beta \in \mathbb{F}_{2^3}^*$ with $\text{Tr}_3(\beta) = \beta^{2^2} + \beta^2 + \beta = 0;$

KORKAR KERKER SAGA

- \triangleright many known APN functions in small dimensions are of the form $F(x) = L_1(x^3) + L_2(x^9)$, with L_1, L_2 linear functions:
	- \bullet x^3 and $x^3 + \mathit{Tr}(x^9)$ are infinite families of APN functions
	- for $n = 8$ out of 23 APN functions (2008) 17 are of this form
- ightheoretical properties and restrictions on L_1 and L_2 for such function to be APN in \mathbb{F}_{2^n} :
	- if $F(x)$ is APN for an even *n* then $F(a) \neq 0$ for any $a \neq 0$;
	- \bullet if $F(x)$ is APN for $n=6m$ then $L_1(a^3\beta)\neq 0$ for any $a\neq 0$ and $\beta \in \mathbb{F}_{2^3}^*$ with $\text{Tr}_3(\beta) = \beta^{2^2} + \beta^2 + \beta = 0;$

KORKAR KERKER SAGA

 \triangleright with some restrictions it is possible to perform a lighter computational search in bigger dimensions

- \triangleright many known APN functions in small dimensions are of the form $F(x) = L_1(x^3) + L_2(x^9)$, with L_1, L_2 linear functions:
	- \bullet x^3 and $x^3 + \mathit{Tr}(x^9)$ are infinite families of APN functions
	- for $n = 8$ out of 23 APN functions (2008) 17 are of this form
- ightheoretical properties and restrictions on L_1 and L_2 for such function to be APN in \mathbb{F}_{2^n} :
	- if $F(x)$ is APN for an even *n* then $F(a) \neq 0$ for any $a \neq 0$;
	- \bullet if $F(x)$ is APN for $n=6m$ then $L_1(a^3\beta)\neq 0$ for any $a\neq 0$ and $\beta \in \mathbb{F}_{2^3}^*$ with $\text{Tr}_3(\beta) = \beta^{2^2} + \beta^2 + \beta = 0;$
- \triangleright with some restrictions it is possible to perform a lighter computational search in bigger dimensions
	- $n = 8x^9 + L(x^3)$ w. $L(x) = \alpha x^4 + \alpha^{-1} x^2 + \alpha^{-2} x$ is APN • $n = 10 x^9 + L(x^3)$ w. $L(x) = \alpha x^4 + \alpha^{-1} x^2 + \alpha^{-2} x$ is APN

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + + E + + E + + O + O + + E + + O + + C + + + + +

- \triangleright many known APN functions in small dimensions are of the form $F(x) = L_1(x^3) + L_2(x^9)$, with L_1, L_2 linear functions:
	- \bullet x^3 and $x^3 + \mathit{Tr}(x^9)$ are infinite families of APN functions
	- for $n = 8$ out of 23 APN functions (2008) 17 are of this form
- ightheoretical properties and restrictions on L_1 and L_2 for such function to be APN in \mathbb{F}_{2^n} :
	- if $F(x)$ is APN for an even *n* then $F(a) \neq 0$ for any $a \neq 0$; \bullet if $F(x)$ is APN for $n=6m$ then $L_1(a^3\beta)\neq 0$ for any $a\neq 0$ and $\beta \in \mathbb{F}_{2^3}^*$ with $\text{Tr}_3(\beta) = \beta^{2^2} + \beta^2 + \beta = 0;$
- \triangleright with some restrictions it is possible to perform a lighter computational search in bigger dimensions
	- $n = 8x^9 + L(x^3)$ w. $L(x) = \alpha x^4 + \alpha^{-1} x^2 + \alpha^{-2} x$ is APN • $n = 10 x^9 + L(x^3)$ w. $L(x) = \alpha x^4 + \alpha^{-1} x^2 + \alpha^{-2} x$ is APN
- when *n* is even the function $x^9 + L(x^3)$ is APN in \mathbb{F}_{2^n} with $L(x) = \gamma x^4 + \gamma^{-1} x^2 + \gamma^{-2} x$ for any γ that is not a cube

- \triangleright many known APN functions in small dimensions are of the form $F(x) = L_1(x^3) + L_2(x^9)$, with L_1, L_2 linear functions:
	- \bullet x^3 and $x^3 + \mathit{Tr}(x^9)$ are infinite families of APN functions
	- for $n = 8$ out of 23 APN functions (2008) 17 are of this form
- ightheoretical properties and restrictions on L_1 and L_2 for such function to be APN in \mathbb{F}_{2^n} :
	- if $F(x)$ is APN for an even *n* then $F(a) \neq 0$ for any $a \neq 0$; \bullet if $F(x)$ is APN for $n=6m$ then $L_1(a^3\beta)\neq 0$ for any $a\neq 0$ and $\beta \in \mathbb{F}_{2^3}^*$ with $\text{Tr}_3(\beta) = \beta^{2^2} + \beta^2 + \beta = 0;$
- \triangleright with some restrictions it is possible to perform a lighter computational search in bigger dimensions
	- $n = 8x^9 + L(x^3)$ w. $L(x) = \alpha x^4 + \alpha^{-1} x^2 + \alpha^{-2} x$ is APN • $n = 10 x^9 + L(x^3)$ w. $L(x) = \alpha x^4 + \alpha^{-1} x^2 + \alpha^{-2} x$ is APN
- when *n* is even the function $x^9 + L(x^3)$ is APN in \mathbb{F}_{2^n} with $L(x) = \gamma x^4 + \gamma^{-1} x^2 + \gamma^{-2} x$ for any γ that is not a cube
- \blacktriangleright CCZ-equivalent to an already known APN function x^3

In many situations we want the cipher to be invertible

PERMUTATION S-Box

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ APN permutation

In many situations we want the cipher to be invertible

PERMUTATION S-Box

- $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ APN permutation
	- \triangleright n odd: known APN permutations in every dimension $(x^{2^n-2} = x^{-1})$

In many situations we want the cipher to be invertible

PERMUTATION S-Box

- $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ APN permutation
	- \triangleright n odd: known APN permutations in every dimension $(x^{2^n-2} = x^{-1})$
	- \blacktriangleright n even:
		- \triangleright n = 4 no APN permutation (first computational proof and then theoretic one)
		- \blacktriangleright n = 6 found 1 APN permutation in 2010 by Dillon et al. (NSA) : applied CCZ-equivalence to an already known quadratic APN function

KORKARYKERKER OQO

$$
\mathbf{p} \cdot n \geq 8
$$
?

In many situations we want the cipher to be invertible

PERMUTATION S-Box

- $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ APN permutation
	- \triangleright n odd: known APN permutations in every dimension $(x^{2^n-2} = x^{-1})$
	- \blacktriangleright n even:
		- \triangleright n = 4 no APN permutation (first computational proof and then theoretic one)
		- \blacktriangleright n = 6 found 1 APN permutation in 2010 by Dillon et al. (NSA) : applied CCZ-equivalence to an already known quadratic APN function

 \bullet n > 8 ?

Dream goal:

- find other APN permutations in even dimension
- find a family of APN permutations in even dimension

Takk

イロトメ都トメミトメミト、ミー

 298