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Block ciphers

Example of translation based cipher



Vectorial Boolean Function
Given n,m integers, an (n,m)-function is a function that transform
a sequence of n bits into a sequence of m bits,

F : Fn
2 → Fm

2 with F2 = {0, 1}

F (x1, . . . , xn) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

, fi : Fn
2 → F2

If n = m an equivalent representation (univariate polynomial)

F : F2n → F2n F (x) =
∑2n−1

i=0 cix i , ci ∈ F2n .
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Symmetric ciphers are designed by appropriate composition of
nonlinear Boolean functions
→ in block ciphers the security depends on S-boxes

Most cryptographic attacks
⇓

mathematical properties that measure the resistance of the S-box

I differential attack
I linear cryptanalysis



Symmetric ciphers are designed by appropriate composition of
nonlinear Boolean functions
→ in block ciphers the security depends on S-boxes

Most cryptographic attacks
⇓

mathematical properties that measure the resistance of the S-box

I differential attack
I linear cryptanalysis



Symmetric ciphers are designed by appropriate composition of
nonlinear Boolean functions
→ in block ciphers the security depends on S-boxes

Most cryptographic attacks
⇓

mathematical properties that measure the resistance of the S-box

I differential attack
I linear cryptanalysis



I DIFFERENTIAL ATTACK

how differences in an input can affect the resulting difference
at the output.

x →

x + a →

F

 → y

→ y + b

δ = max
a,b∈Fna 6=0

|{x ∈ Fn : F (a + x)− F (x) = b}|

a
a
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I DIFFERENTIAL ATTACK ⇒ differential δ-uniformity
how differences in an input can affect the resulting difference
at the output.

x →

x + a →

F

 → y

→ y + b

δ = max
a,b∈Fn

2a 6=0
|{x ∈ Fn

2 : F (a + x)− F (x) = b}|

I best resistance when δ = 2n−m: PERFECT NONLINEAR (PN)
n even and m ≤ n

2
I if n = m smallest δ = 2: ALMOST PERFECT NONLINEAR

(APN)
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I LINEAR CRYPTANALYSIS

finding affine approximations to the action of a cipher

g : Fn
2 → F2 is affine if degree is at most 1 (g ∈ A)

a
dH(f , g) = |{x ∈ Fn

2 : f (x) 6= g(x)}| (Hamming distance)

a
NL(F ) = min

g∈A,λ∈Fm∗
2

dH(λ · F , g) ≤ 2n−1 − 2
n
2−1

a
m ≤ n

2
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I LINEAR CRYPTANALYSIS ⇒ nonlinearity NL
finding affine approximations to the action of a cipher
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CCZ-equivalence relation

Most general equivalence relation known that preserves δ and NL

Graph of a function F : ΓF = {(x ,F (x)) : x ∈ Fn
2}

a
F1 and F2 are CCZ-equivalent if L(ΓF1) = ΓF2 , for an affine
permutation L.



OPTIMAL BOOLEAN FUNCTIONS

F : Fn
2 → Fn

2

or equivalently

F : F2n → F2n F (x) =
∑2n−1

i=0 cix i .

we are interested in APN and AB functions

Other applications of APN and AB functions:
• coding theory
• sequence design
• combinatorial analysis
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On APN and AB functions F : F2n → F2n

I classification of APN, AB f. is an hard open problem
I complete classification known only for n ≤ 5
I few infinite classes of APN and AB functions known
• 6 infinite families of power APN f. (4 are also AB)

(for example x2i +1 with gcd(i , n)=1)
• 11 infinite families of quadratic APN f. (4 are also AB)

I even for small n there are too many vectorial Boolean
functions to just use a purely computer search

I just one APN permutation is known in even dimension



We have to come up with new methods to construct new optimal
functions and to analyse them

I combination of theoretic results and computational insights to
find new families

I studying equivalence relations between already known
functions

I finding new invariant of the CCZ-equivalence to easily prove
CCZ-inequivalent functions

I finding more general equivalence relations that preserve
optimal properties



Example
I many known APN functions in small dimensions are of the

form F (x) = L1(x3) + L2(x9), with L1, L2 linear functions:
• x3 and x3 + Tr(x9) are infinite families of APN functions
• for n = 8 out of 23 APN functions (2008) 17 are of this form

I theoretical properties and restrictions on L1 and L2 for such
function to be APN in F2n :
• if F (x) is APN for an even n then F (a) 6= 0 for any a 6= 0;
• if F (x) is APN for n = 6m then L1(a3β) 6= 0 for any a 6= 0
and β ∈ F∗23 with Tr3(β) = β22 + β2 + β = 0;

I with some restrictions it is possible to perform a lighter
computational search in bigger dimensions
• n = 8 x9 + L(x3) w. L(x) = αx4 + α−1x2 + α−2x is APN
• n = 10 x9 + L(x3) w. L(x) = αx4 + α−1x2 + α−2x is APN

I when n is even the function x9 + L(x3) is APN in F2n with
L(x) = γx4 + γ−1x2 + γ−2x for any γ that is not a cube

I CCZ-equivalent to an already known APN function x3
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On APN Permutations
In many situations we want the cipher to be invertible

PERMUTATION S-Box

F : Fn
2 → Fn

2 APN permutation

I n odd: known APN permutations in every dimension
(x2n−2 = x−1)

I n even:
I n = 4 no APN permutation (first computational proof and

then theoretic one)
I n = 6 found 1 APN permutation in 2010 by Dillon et al.

(NSA) : applied CCZ-equivalence to an already known
quadratic APN function

I n ≥ 8 ?
Dream goal:
• find other APN permutations in even dimension
• find a family of APN permutations in even dimension
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