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Cipher: M set of possible messages
k € K key-space
pk + M — M encryption function



Block ciphers

Example of translation based cipher
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Vectorial Boolean Function

Given n, m integers, an (n, m)-function is a function that transform
a sequence of n bits into a sequence of m bits,

FAES - 0
fl(X17"'aXn)
F(x1,...,xn) = : , fi i F§ — F»

fm(x1, ..., Xn)

If n = m an equivalent representation (univariate polynomial)

Flx) = 225" e, 6 € B
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mathematical properties that measure the resistance of the S-box

» differential attack

» linear cryptanalysis



» DIFFERENTIAL ATTACK



» DIFFERENTIAL ATTACK
how differences in an input can affect the resulting difference
at the output.

X+a — — y+b



» DIFFERENTIAL ATTACK = differential d-uniformity
how differences in an input can affect the resulting difference
at the output.

x = -y
F
xX+a — — y+b

d= a7br€nFag>§7é0 {x € F3 : F(a+ x) — F(x) = b}|



» DIFFERENTIAL ATTACK = differential d-uniformity
how differences in an input can affect the resulting difference
at the output.

x = -y
F
xX+a — — y+b
0= a7br€nFag>§7é0|{x €y : F(a+ x) — F(x) = b}

> best resistance when 6 = 2"~™: PERFECT NONLINEAR (PN)
neven and m < g

> if n = m smallest 6 =2: ALMOST PERFECT NONLINEAR
(APN)



» LINEAR CRYPTANALYSIS



» LINEAR CRYPTANALYSIS
finding affine approximations to the action of a cipher

g : F5 — T, is affine if degree is at most 1 (g € A)

du(f,g) = [{x € F5: f(x) # g(x)}| (Hamming distance)



» LINEAR CRYPTANALYSIS = nonlinearity NL
finding affine approximations to the action of a cipher

g : 5 — Fy is affine if degree is at most 1 (g € A)

du(f,g) = {x € F5 : f(x) # g(x)}| (Hamming distance)

— H . < n—1 _ -1
NL(F) geAr?)\lgFg’* dy(A-F,g) <2 22



» LINEAR CRYPTANALYSIS = nonlinearity NL
finding affine approximations to the action of a cipher

g : 5 — Fy is affine if degree is at most 1 (g € A)

du(f,g) = {x € F5 : f(x) # g(x)}| (Hamming distance)

— H . < n—1 _ -1
NL(F) geArr’}lgFg’* dy(A-F,g) <2 22

» best resistance when NL is maximum: BENT
neven and m < g

> if n=m: NL(F) < 2" — 2" ALMOST BENT (AB)




CCZ-equivalence relation

Most general equivalence relation known that preserves § and NL

Graph of a function F: T'r = {(x, F(x)) : x € F§}

F1 and Fp are CCZ-equivalent if L(I'r,) = I'f,, for an affine
permutation L.
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OPTIMAL BOOLEAN FUNCTIONS

) = 5t el

we are interested in APN and AB functions

or equivalently

Other applications of APN and AB functions:
e coding theory
e sequence design

e combinatorial analysis



On APN and AB functions | F : [Fon — [Fon

v

classification of APN, AB f. is an hard open problem

v

complete classification known only for n <5
few infinite classes of APN and AB functions known
e 6 infinite families of power APN f. (4 are also AB)

(for example x?*1 with ged(i, n)=1)
e 11 infinite families of quadratic APN f. (4 are also AB)
» even for small n there are too many vectorial Boolean
functions to just use a purely computer search

v

v

just one APN permutation is known in even dimension



We have to come up with new methods to construct new optimal
functions and to analyse them

» combination of theoretic results and computational insights to
find new families

» studying equivalence relations between already known
functions

» finding new invariant of the CCZ-equivalence to easily prove
CCZ-inequivalent functions

» finding more general equivalence relations that preserve
optimal properties
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» many known APN functions in small dimensions are of the
form F(x) = L1(x3) + La(x®), with Ly, Ly linear functions:
e x3 and x3 + Tr(x?) are infinite families of APN functions
e for n = 8 out of 23 APN functions (2008) 17 are of this form
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Example

>

many known APN functions in small dimensions are of the
form F(x) = L1(x3) + La(x®), with Ly, Ly linear functions:

e x3 and x3 + Tr(x?) are infinite families of APN functions

e for n = 8 out of 23 APN functions (2008) 17 are of this form

theoretical properties and restrictions on L; and Ly for such
function to be APN in Fo:

e if F(x) is APN for an even n then F(a) # 0 for any a # 0;
e if F(x) is APN for n = 6m then L1(a%3) # 0 for any a # 0
and 8 € Fy with Tr3(8) = % + 82+ B =0;

with some restrictions it is possible to perform a lighter
computational search in bigger dimensions
en=28x"+L(x}) w. L(x) =ax*+a1x?>+a?x is APN
e n=10x°+ L(x3) w. L(x) =ax* +a x®+a2x is APN
when n is even the function x° 4 L(x3) is APN in Fa» with
L(x) = yx* + 7~ 1x2 + v~ 2x for any 7 that is not a cube

CCZ-equivalent to an already known APN function x3
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On APN Permutations

In many situations we want the cipher to be invertible
PERMUTATION S-Box

F:F3 — F5 APN permutation
» n odd: known APN permutations in every dimension
(XZ”—2 — X—l)
> n even:

» n =4 no APN permutation (first computational proof and
then theoretic one)

» n =06 found 1 APN permutation in 2010 by Dillon et al.
(NSA) : applied CCZ-equivalence to an already known
quadratic APN function

» n>87

Dream goal:
e find other APN permutations in even dimension

e find a family of APN permutations in even dimension
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