Coding for Distributed Computing

Albin Severinson^{\dagger ‡}, Alexandre Graell i Amat^{\dagger}, and Eirik Rosnes[‡]

† Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden ‡ University of Bergen/Simula Research Lab, Bergen, Norway

Finse, May 09, 2018

Challenges

- Straggler problem: May induce a large computational delay.
- Bandwidth scarcity: Need to reduce the communication load.

Problem addressed: Matrix multiplication • Given an $m \times n$ matrix A and N vectors x_1, \ldots, x_N , we want to compute $y_1 = Ax_1, \ldots, y_N = Ax_N$ using K servers.

Block-diagonal coding				f
			Sintance	

The straggler problem

(Speeding up Distributed Machine Learning Using Codes, Lee et al., 2016)

Block-diagonal coding	LT code-based scheme	Numerical results		simula 🕧	ì
				Sintande	-

The Straggler Problem y=Ax

In general

- Introduce redundancy by encoding the input matrix A.
- Each server is given more work. However, this may still lower the computational delay!

ıib

Coding for distributed computing

- [Lee *et al.* '17]: Introduce redundant computations using MDS codes to alleviate the straggler problem.
- [Li, Maddah-Ali, Avestimehr '17]: A fundamental tradeoff between computational delay and communication load. A unified coding framework trading higher computational delay for lower communication load.

Unified coding framework [Li, Maddah-Ali, Avestimehr '17]

- Encode the columns of $A \in \mathbb{F}^{m \times n}$ using an (r, m) MDS code by multiplying A by an $r \times n$ encoding matrix Ψ_{MDS} , i.e., $C = \Psi_{MDS}A$.
- Code length r proportional to number of rows of $A \rightarrow high$ overall delay!

Block-diagonal coding	LT code-based scheme	Numerical results	

In this talk

Two coding schemes to reduce the overall computational delay

- Block-diagonal coding scheme, based on a block-diagonal encoding matrix and shorter MDS codes.
- LT code-based scheme under inactivation decoding.

Outcome

- Block-diagonal coding scheme: Significantly lower overall computational delay than the scheme by [Li, Maddah-Ali, Avestimehr '17] with no or little impact on communication load.
- LT code-based scheme: Very good performance when requiring to meet a deadline with high probability, at the expense of an increased communication load.

	LT code-based scheme	Numerical results		simula	Duit
				Jinnende	

Block-diagonal coding scheme

Idea

$$C = \Psi_{\text{BDC}}A, \quad \Psi_{\text{BDC}} = \begin{bmatrix} \psi_1 & & \\ & \ddots & \\ & & \psi_T \end{bmatrix}, \quad \psi_i : \left(\frac{r}{T}, \frac{m}{T}\right) \text{ MDS code.}$$

• Need any m/T out of r/T rows from each partition to decode.

Assignment of coded rows to servers

- Need to assign coded rows to servers very carefully in some instances (such as when the number of servers is small).
- This assignment can be formulated as an optimization problem.

			simu
			Shine

Lossless partitioning

Theorem

For $T \leq r/{\binom{K}{\mu q}}$, there exists an assignment matrix such that the communication load and the computational delay (not taking encoding/decoding delay into account) are equal to those of the unpartitioned scheme by [Li, Maddah-Ali, Avestimehr '17].

However...

The overall computational delay of the block-diagonal coding scheme is much lower than that of the scheme by Li *et al.* due to its lower encoding and decoding complexity.

E()

simula@uib

Luby-transform code-based scheme

LT code-based scheme

- Encode A as $C = \Psi_{LT}A$; Ψ_{LT} corresponds to an LT code of fixed rate.
- Decode the LT code using inactivation decoding.

Code design

- Design the LT code for a minimum overhead ϵ_{\min} and a target failure probability $P_{\rm f,target}$, such that $P_{\rm f}(\epsilon_{\min}) \leq P_{\rm f,target}$.
- Increasing
 *ϵ*_{min} leads to lower encoding/decoding complexity but increased
 communication load and may require waiting for more servers → optimal
 *ϵ*_{min} depends on the scenario.
- For a given ε_{min} and P_{f,target}, optimize the LT code so that the decoding complexity is minimized: for a fixed computational delay of Cx₁,..., Cx_N, minimize the computational delay of the decoding phase.

Block-diagonal coding	LT code-based scheme		simula	Duit
			Jinnana	- 412

Computational delay and communication load

Block-diagonal coding	LT code-based scheme		simula	Duit
			Sintarq	-

Performance as a function of the number of partitions

• A with m = 6000 rows and n = 6000 columns, N = 6 vectors, K = 9 servers, and code rate 2/3.

Distributed computing under a deadline

• A with m = 134000 rows and n = 10000 columns, N = 134000 vectors, K = 201 servers, T = 13400 partitions, and code rate 2/3.

		Conclusion	One More Thing	simula@u	iił
				Jiniaidea	

Conclusion

Take-home message...

- The encoding and decoding delay may contribute significantly to the overall computational delay.
- The BDC scheme yields significantly lower computational delay (up to 70%-80%) with no or little impact on the communication load.
- The LT code-based scheme achieves very good performance when needing to meet a deadline with high probability.
- Paper available in arxiv:
 A. Severinson, A. Graell i Amat, and E. Rosnes, "Block-Diagonal and LT Codes for Distributed Computing With Straggling Servers".
- Code on Github: github.com/severinson/coded-computing-tools

Block-diagonal coding			simula	Duih
			Sintande	

One More Thing ...

