Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
00000000	000000	0000000000	00

Yoyo Game with AES

Navid Ghaedi Bardeh

University of Bergen

May 8, 2018

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion

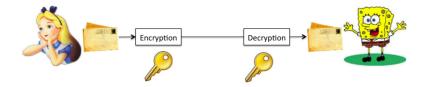
Outline

2 Yoyo Game

3 Application on AES

4 Conclusion

Introduction on Block cipher ••••••• Yoyo Game


Application on AES

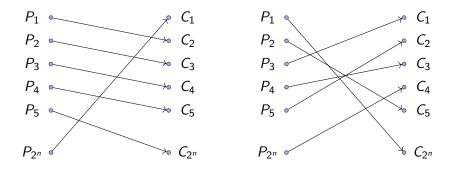
Conclusion

Classical Model of Symmetric Cryptography

Classical Model of Symmetric Cryptography

Alice and Bob exchange the secret key through a secure channel.

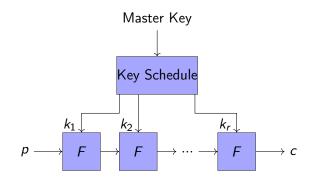
Introduction on Block cipher	Yoyo Game 000000	Application on AES	Conclusion
Block Cipher			
Block Cipher			


A block of plaintext p encrypt to a block of ciphertext c under the action of the key k:

$$E: \{0,1\}^n \times \{0,1\}^\kappa \to \{0,1\}^n$$
$$(p,k) \to E(p,k) = c$$

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
Block Cipher			
Block Cipher(cont.)			

Each key induces a permutation between the plaintexts and the ciphertexts

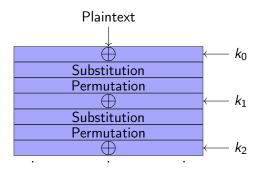


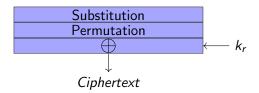
Under key K_1

Under key K_2

Introduction on Block cipher ०००●०००००	Yoyo Game	Application on AES	Conclusion 00
Iterated Block Cipher			
Iterated Block Cipher			

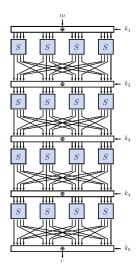
Iterate a round function f several times:




Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
Round Function			
How to build the roun	nd function?		

Two typical approaches:

- Feistel Network
- Substitution Permutation Network (SPN)


Introduction on Block cipher	Yoyo Game 000000	Application on AES	Conclusion
Substitution Permutation Network (SPN)			
Substitution Permutation	Network (SPN)	

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
Substitution Permutation Network (SPN)		
Coloritoritory Democratic	Notes (C		

Substitution Permutation Network (SPN)

Introduction on Block cipher ○○○○○○●○	Yoyo Game	Application on AES	Conclusion
Cryptanalysis of block ciphers			
Cryptanalysis of block	ciphers		

In symmetric key cryptography, security proofs are partial and insufficient

- An algorithm is secure as long there is no attack against it
- Make it secure against all known attacks.
- The more an algorithm is analysed without being broken, the more reliable it is.

What is a broken cipher?

- If a block cipher encrypts messages with a k-bit key, no attack with time complexity less than 2^k should be known
- Otherwise, the cipher is considered as broken (even if the complexity of the attack is not practical).

Introduction on Block cipher ○○○○○○○●	Yoyo Game	Application on AES	Conclusion
Distinguisher Attack			
Distinguisher Attack			

- of the weakest cryptographic attack.
- one simulates the block cipher for which the cryptography key has been chosen at random;
- the other simulates a truly random permutation.
- **Goal:** distinguish the two oracles, i.e. decide which oracle is the cipher.

Introduction on Block cipher	Yoyo Game ●○○○○○	Application on AES	Conclusion 00
Yoyo Game			
Introduction			

- The Yoyo game was introduced by Biham et al. against Skipjack (Feistel block cipher)
- Yoyo Game: Suppose a plaintext pair has (or has not) a specific property. It is possible to generate other plaintext pairs that has (or has not) the same property by exchanging a specific word of their ciphertexts and decrypt new ciphertext pair.
- Open problem: How to do this for SPN ciphers and in particular for AES

Introduction on Block cipher	Yoyo Game ○●○○○○	Application on AES	Conclusion
Generic block cipher			
Generic SPN block ci	pher		

- Let $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}_q^n$ denote the state of a block cipher.
- Let $q = 2^k$ and let s(x) be a kxk permutation s-box.
- The S-box working on a state is defined by

$$S(\alpha) = (s(\alpha_0), s(\alpha_1), \dots, s(\alpha_{n-1}))$$

- Let L be a linear layer in the block cipher
- We consider SPNs of the form:
 - two rounds: $S \circ L \circ S$

Introduction on Block cipher	Yoyo Game ○○●○○○	Application on AES	Conclusion
The yoyo operation			
The yoyo operation			

Definition

For a vector $c\in\mathbb{F}_2^n$ and a pair of states $\alpha,\beta\in\mathbb{F}_q^n$ define a new state $\rho^c(\alpha,\beta)$ by

$$\rho^{\mathsf{c}}(\alpha,\beta)_i = \begin{cases} \alpha_i & \text{if } c_i = 1, \\ \beta_i & \text{if } c_i = 0. \end{cases}$$

Example

Let c = (0110) and $\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$. Then

$$\alpha' = \rho^{(0110)}(\alpha,\beta) = (\beta_0,\alpha_1,\alpha_2,\beta_3)$$

and

$$\beta' = \rho^{(0110)}(\beta, \alpha) = (\alpha_0, \beta_1, \beta_2, \alpha_3)$$

Call $(\alpha', \beta') = (\rho^{c}(\alpha, \beta), \rho^{c}(\beta, \alpha))$ a yoyo pair.

Introduction on Block cipher	Yoyo Game ○○○●○○	Application on AES	Conclusion
Properties of the yoyo operation			

Properties of the yoyo operation

Lemma

Let
$$\alpha' = \rho^{c}(\alpha, \beta)$$
 and $\beta' = \rho^{c}(\beta, \alpha)$.
a) $\alpha' \oplus \beta' = \alpha \oplus \beta$
b) $S(\alpha') \oplus S(\beta') = S(\alpha) \oplus S(\beta)$
c) $L(S(\alpha')) \oplus L(S(\beta')) = L(S(\alpha)) \oplus L(S(\beta))$

Proof. a) $\rho^{c}(\alpha,\beta)_{i} \oplus \rho^{c}(\beta,\alpha)_{i} = \begin{cases} \alpha_{i} \oplus \beta_{i} & \text{if } c_{i} = 1, \\ \beta_{i} \oplus \alpha_{i} & \text{if } c_{i} = 0 \end{cases}$ b) $s(\rho^{c}(\alpha,\beta)_{i}) \oplus s(\rho^{c}(\beta,\alpha)_{i}) = \begin{cases} s(\alpha_{i}) \oplus s(\beta_{i}) & \text{if } c_{i} = 1, \\ s(\beta_{i}) \oplus s(\alpha_{i}) & \text{if } c_{i} = 0 \end{cases}$

c) the result follows from the linearity of L.

Yoyo Game ○○○○●○ Application on AES

Conclusion

The zero difference pattern

The zero difference pattern

Definition (Zero difference pattern)

Let
$$\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}_q^n$$
. Define

$$\nu(\alpha) = (z_0, z_1, \ldots, z_{n-1}) \in \mathbb{F}_2^n$$

where

$$z_i = egin{cases} 1 & ext{if } lpha_i ext{ is zero,} \ 0 & ext{otherwise.} \end{cases}$$

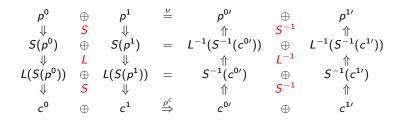
Example

Let $\boldsymbol{\alpha} = (\alpha_{0}, \alpha_{1}, 0, \alpha_{3})$. Then

$$\nu(\alpha) = (0, 0, 1, 0)$$

Lemma

Let
$$\alpha' = \rho^{c}(\alpha, \beta)$$
 and $\beta' = \rho^{c}(\beta, \alpha)$.
a) $\nu(\alpha \oplus \beta) = \nu(S(\alpha) \oplus S(\beta))$


Yoyo Game

Application on AES

Conclusion

Typical use of yoyo operation

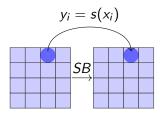
Typical use of yoyo operation

Adaptive

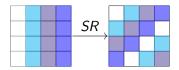
- a) Pick two plaintexts p^0 and p^1 with a zero difference $\nu(p^0 \oplus p^1)$. b) Encrypt p^0 and p^1 to c^0 and c^1 .
- c) Make two new ciphertexts $c^{0\prime} = \rho^c(c^0, c^1)$ and $c^{1\prime} = \rho^c(c^1, c^2)$.
- d) Decrypt $c^{0'}$ and $c^{1'}$.

e)
$$\nu(p^0 \oplus p^1) = \nu(p^{0'} \oplus p^{1'})$$

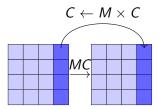
Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
AES			
Advanced Encryption	Standard (AES))	


- Byte-oriented Substitution-Permutation Network.
- Block size of 128 bits, key size of 128, 192, 256 bits.
- Number of rounds depend on key size 10, 12, 14 rounds resp.
- 128 bits of block size, seen as a 4×4 matrix of bytes.

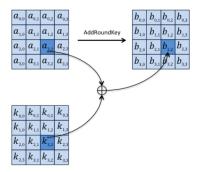
Introduction on Block cipher	Yoyo Game 000000	Application on AES	Conclusion
AES			
An round of AES			


Each round is a composition of four byte-oriented transformations:

- SubBytes
- ShiftRows
- MixColumns
- AddRoundKey


Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion 00
SubBytes			
SubBytes			

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
ShiftRows			
ShiftRows			


Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
MixColumns			
MixColumns			

$$M = \begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
AddRoundKey			
AddRoundKey			

.

Super-box representation of 2 rounds of AES						
Super-box representation of 2 rounds of AES						
Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion			

- $R^2 = AK \circ MC \circ SR \circ SB \circ AK \circ MC \circ SR \circ SB$.
- Rewrite the operations :
- $R^2 = AK \circ MC \circ SR \circ (SB \circ AK \circ MC \circ SB) \circ SR.$
- Then:
- Super-box = SB \circ AK \circ MC \circ SB

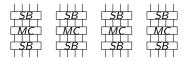
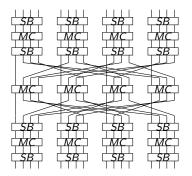


Figure: Super-box of AES


Introduction	Block	cipher

Yoyo Game 000000 Application on AES

Conclusion

4 Rounds of AES

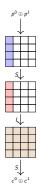
Four Rounds of AES

Figure: $S \circ L \circ S$ in AES

Introduction on Block cipher Yoyo Game App

Application on AES

Conclusion


Four Round AES Yoyo Distinguisher

Four Round AES Yoyo Distinguisher

Theorem

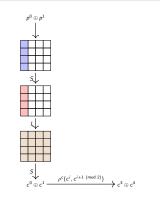
Four rounds of AES can be distinguished from a random cipher using one pair of chosen plaintexts and one (adaptively) chosen ciphertext pair.

1 Select $p^0 \oplus p^1$ that differ in only one word **2** ask for encryption c^0 and c^1 of p^0 and p^1

Yoyo Game

Application on AES

Conclusion


Four Round AES Yoyo Distinguisher

Four Round AES Yoyo Distinguisher

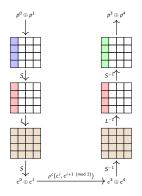
Theorem

Four rounds of AES can be distinguished from a random cipher using one pair of chosen plaintexts and one (adaptively) chosen ciphertext pair.

Select p⁰ ⊕ p¹ that differ in only one word
 ask for encryption c⁰ and c¹ of p⁰ and p¹
 construct c³ = ρ^c(c⁰, c¹), c⁴ = ρ^c(c¹, c⁰)

Yoyo Game

Application on AES


Conclusion

Four Round AES Yoyo Distinguisher

Four Round AES Yoyo Distinguisher

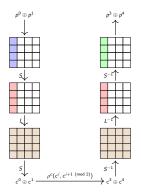
Theorem

Four rounds of AES can be distinguished from a random cipher using one pair of chosen plaintexts and one (adaptively) chosen ciphertext pair.

Yoyo Game

Application on AES

Conclusion


Four Round AES Yoyo Distinguisher

Four Round AES Yoyo Distinguisher

Theorem

Four rounds of AES can be distinguished from a random cipher using one pair of chosen plaintexts and one (adaptively) chosen ciphertext pair.

if AES, then same zero difference pattern (prob for random = 2⁻⁹⁶)

Introduction on Block cipher	Yoyo Game	Application on AES ○○○○○○○●○	Conclusion
Results			
Results			

Table: Secret-Key Distinguishers for AES

Property	Rounds	Data	Cost
Trun. Diff.	3	2 ^{4.3} CP	2 ^{11.5} XOR
Integral	3	2 ⁸ CP	2 ⁸ XOR
Yoyo	3	3 ACC	1 XOR
Imp. Diff.	4	2 ^{16.25} CP	2 ^{22.3} M
Integral	4	2 ³² CP	2 ³² XOR
Yoyo	4	4 ACC	1 XOR
Struct. Diff.	5	2 ³³	2 ^{36.6} M
Imp. Diff.	5	2 ^{98.2} CP	2 ¹⁰⁷ M
Integral	5	2 ¹²⁸ CC	2 ¹²⁸ XOR
Yoyo	5	2 ^{25.8} ACC	2 ^{24.8} XOR
Yoyo	6	2 ^{122.83} ACC	2 ^{121.83} XOR

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion
Results			
Results			

Table: Comparison of key-recovery on 5 rounds of AES

Attack	Rounds	Data	Computation	Memory
MitM	5	8 CP	2 ⁶⁴	2 ⁵⁶
Imp. Polyt.	5	15 CP	2 ⁷⁰	2 ⁴¹
Integral	5	2 ¹¹ CP	2 ^{45.7}	small
Imp. Diff.	5	2 ^{31.5} CP	2 ³³	2 ³⁸
Boomerang	5	2 ³⁹ ACC	2 ³⁹	2 ³³
Yoyo	5	2 ^{11.3} ACC	2 ²⁹	small

Introduction on Block cipher	Yoyo Game 000000	Application on AES	Conclusion ●○
Conclusion			
Conclusion			

- new records 3-6 round distinguishers AES
- new record 5 round key recovery
- can be applied directly to similar designs as well
- can be improved (more rounds) for lightweight designs
- results published at Asiacrypt 2017

Introduction on Block cipher	Yoyo Game	Application on AES	Conclusion ⊙●
Conclusion			

Thanks for your attention!