

Norwegian University of Science and Technology

Mandatory security vs. Digital Forensics

Finse Winter School 2018
Gunnar Alendal

Motivation

Digital forensic needs data

COTS mandatory security protects data

Digital forensic needs to adapt

Mobile security - then

- device encryption ⇒ no
- screen lock ⇒ no
- secruity ⇒ no/low
- complexity ⇒ low

- digital forensics ⇒ ad-hoc, case driven
 - "Can you fix anything for this device by end of the day?"

Mobile security - now

- device encryption ⇒ mandatory
- screen lock ⇒ opt out
- security ⇒ in all layers
- complexity ⇒ high
 - OS, flash (UFS / eMMC), modem, Wifi, camera, usb, sdcard,
 NFC, Bluetooth, GPS, sensors, fingerprint reader, iris scanner,
 face recognition, peripheral connections, ...

digital forensics ⇒ complex and resource demanding

Mobile security - data protection

- Encryption of user data
 - HW AES
 - Keys tied to user credentials (screen lock)
 - Max. tries
 - Automatic wiping
 - Remote wiping
 - Keys tied to HW
 - Only this phone can decrypt user data
 - chip-off hard

Mobile security - phone protection 1

- Theft protection
 - Remote wipe
 - Remote track
 - Remote lock
 - Factory Reset Protection (FRP)
 - prevent reuse
 - prevent installation of custom firmware

Mobile security - phone protection 2

- Integrity protection
 - All running code signed by vendor
 - Custom firmware wipes user data
 - apps are sandboxed
 - user is not root
 - Secure Boot
 - Signature chain from boot to OS (Android / iOS)

Mobile security - Enterprise

- Device lock down
 - Password policy
 - Bunch of security policies
 - no non-OTA updates
- Common Criteria (CC) mode
- Mobile Device Manager (MDM) mode

- Is this game over?
- What security measurements needs to be bypassed?
 - Some?
 - 。 All?
- How to approach this?

Security vulnerabilities?

- Pwn2Own contest 2017:
 - 11 vulnerabilities chained to get root (Samsung Galaxy S8)

- LE has possible advantages
 - Time (wait for vulnerability)
 - Resources (money and people)
 - Police authority

Bypassing security mechanisms

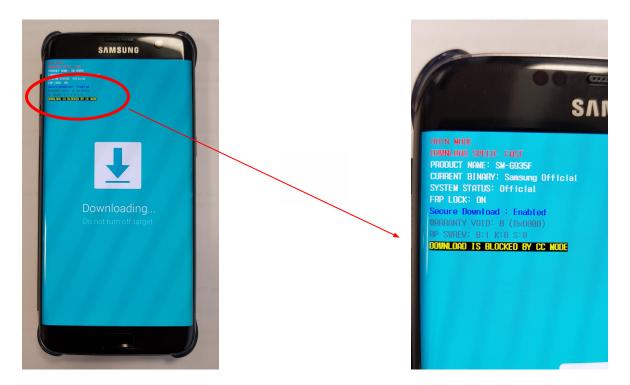
Bigger attack surface ⇒ higher prob. of vulnerability

- Example attack surfaces on mobile phones:
 - o Network ⇒ wifi, modem, ...
 - ∘ Physical interfaces ⇒ usb, sim, sdcard, jack, ...
 - Vendor proprietary ⇒ Firmware update protocol (usb), ...

Example: one layer

- CC mode
 - Enterprise lock down of employee phones
 - Blocks <u>non-OTA</u> firmware updates

Firmware update / ODIN mode (non-OTA)


Vendor proprietary

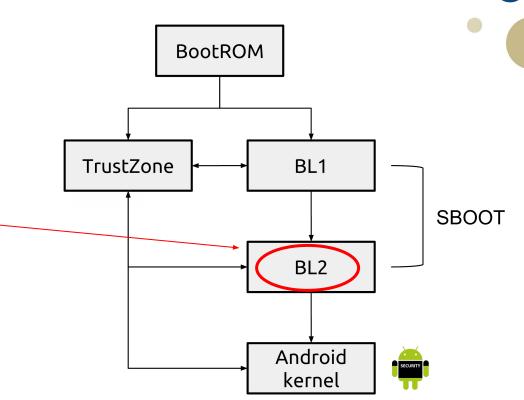
Physical access to device (USB)

User (attacker) install unsigned/signed FW

Increase attack surface

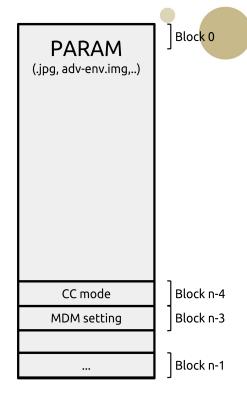
Blocked Firmware update mode / ODIN (SM-G935

CC mode / MDM mode - questions


How does phone knows when to block ODIN mode?

• Can we disable this, to regain access to ODIN mode?

Samsung Secure Boot model (Exynos SoC)


SBOOT/BL2 functionality:

- Signature check kernel
- eFUSE reading/setting
- RPMB
- ...
- Load and boot Android kernel
- firmware update mode / ODIN
- CC mode
- MDM mode

CC mode / MDM mode - SBOOT knowledge

- CC and MDM mode settings stored in a logical partition, PARAM
- SBOOT parses PARAM
- CC mode setting is encrypted with white box AES
 - Key embedded in algorithm
- MDM setting stored in clear text

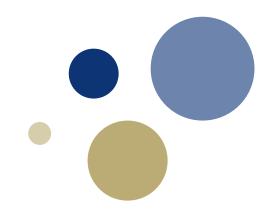
Example summary

- ODIN mode can be re-enabled
- We demonstrated three possible approaches
 - Trigger error condition ⇒ Error handling vulnerability
 - Low level access to flash ⇒ Modify PARAM partition
 - Modify execution flow through vulnerability ⇒ Break code trust

- Examples of security vulnerabilities
 - Logical error ⇒ Trigger error condition
 - Design flaws ⇒ Broken assumptions (chip-off / chip-on)
 - ∘ Program flow error ("buffer overflow") ⇒ Exploitation
 - → Hidden secrets ⇒ Debug functionality (aka. "backdoors")

- Digital forensic needs?
 - More focus on security in COTS products
 - More reverse engineering efforts
 - More weaponization of known/unknown vulnerabilities

- Exploitation development cycle needed?
 - Identify
 - Surveillance
 - Develop
 - Acquire data



- Which direction is best for mankind?
 - LE backdoors <==> All cops are good?
 - Keep current "develop/exploit/patch" cycle?

Is hacking COTS security "for good" OK?

Norwegian University of Science and Technology

Q&A

Gunnar Alendal