
Cryptography for Cloud Security

Mohsen Toorani

Department of Informatics, University of Bergen

Simula@UiB

Coins Winter School
Finse, Norway
May 12, 2017

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 1 / 58

Our project

Title

Cryptographic Tools for Cloud Security
Funded by the Norwegian Research Council (IKTPLUSS)

Partners

NTNU (Department of Information Security and Communication
Technology & Department of Mathematics)

Simula@UiB

ntnu.edu/iik/cloudcrypto

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 2 / 58

Outline

1 Computing on encrypted data
(Fully) Homomorphic Encryption
Functional Encryption
Obfuscation

2 Secure Deduplication
Deduplication schemes
Side channels in deduplication

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 3 / 58

Computing on encrypted data

Privacy?

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 4 / 58

Computing on encrypted data

Privacy?

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 4 / 58

Homomorphic Encryption

A way to delegate processing of data without giving access to it

Encryption schemes that allow computations on the ciphertexts
Ek [m1] • Ek [m2] = Ek [m1 ◦m2]

Applications:
E-voting: Votes are encrypted as 1 or 0. Ciphertexts are aggregated
before decryption. No individual vote is revealed.
Requires additive homomorphic encryption: ◦ is +
Secure cloud computing: Requires fully homomorphic encryption
(homomorphic properties for both + and ×)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 5 / 58

Homomorphic Encryption

Multiplicative homomorphic encryption

- Unpadded RSA: me
1 ×me

2 = (m1 ×m2)e

- ElGamal: Given public key (g , h = ga), ciphertexts (g r1 , hr1m1) and
(g r2 , hr2m2), multiple both components (g r1+r2 , hr1+r2m1m2)

Additive homomorphic encryption

Paillier cryptosystem [Eurocrypt’99]: Additive on Zn

Public key: (n, g) where p and q: two large prime, n = pq, g ∈R Z∗n2

Private key: (λ, µ) where λ = lcm(p − 1, q − 1), and

µ = (g
λmodn2−1

n)−1modn

For encrypting m ∈ Zn: Select random r ∈R Z∗n
Compute c = gmrn mod n2

For decryption: compute m = µ cλmodn2−1
n mod n

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 6 / 58

Homomorphic Encryption
Continued

Examples of schemes with limited functionality

RSA works for MULT (mod N)
Paillier works for ADD (XOR)
BGN05 works for quadratic formulas
MGH08 works for low-degree polynomials
(size of c ← Eval(pk, f , c1, ..., ct) grows exponentially with degree of f)

Somewhat Homomorphic Encryption (SHE)

Eval only works for some functions f

Fully Homomorphic Encryption (FHE)

Fully means that it works for any arbitrary function f
Supports both addition and multiplication
Before Gentry’s work (2009), no FHE scheme

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 7 / 58

Why both addition and multiplication?

Because {XOR, AND} is Turing-complete: any function can be
written as a combination of XOR and AND gates.

If you can compute XOR and AND on encrypted bits, you can
compute ANY function on encrypted inputs.

Example: Searching a database

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 8 / 58

Homomorphic Public-key Encryption

Procedures: (KeyGen, Enc, Dec, Eval)

(sk , pk)← KeyGen(λ)

Correctness: For any function f in supported family F ,

c1 ← Encpk(m1), ... , ct ← Encpk(mt)

c∗ ← Evalpk(f , c1, ..., ct)

Decsk(c∗) = f (m1, ...,mt)

No information about m1, ..., mt , and f (m1, ...,mt) is leaked.

Compactness: complexity of decrypting c∗ does not depend on

complexity of f .

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 9 / 58

SHE + Bootstrappability → FHE

1 Construct a useful “Somewhat Homomorphic Encryption” scheme

2 Modify your SHE scheme and make it bootstrappable if it is not

3 Bootstrappable SHE −−−−−−−−−→
Recryption

FHE

(Note: It is also possible to construct FHE schemes without
bootstrapping).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 10 / 58

Bootstrapping

Problem: Ciphertexts contain random ’noise’ that grows after

homomorphic evaluation (Add and Mult increase noise).

Once the noise exceeds a certain level, the ciphertext can no longer

be decrypted.

Without a noise-reduction, number of homomorphic operations that

can be performed is limited.

The best noise-reduction that kills all noise: Decryption!

Decryption should be done without releasing the secret key

→ We can release Enc(sk): Circular Encryption

(For a cycle of public/secret key-pairs (pki , ski) for i = 1, ..., n,

encrypt each ski under pk(i mod n)+1.)

Whenever noise level increases beyond a limit, use bootstrapping to

reset it to a fixed level. Bootstrapping = “Valve” at a fixed height

Gentry’s “bootstrapping” theorem: If an encryption scheme can

evaluate its own decryption circuit, then it can evaluate everything

[Gentry’09].

Bootstrapping requires homomorphically evaluating the decryption

circuit.
Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 11 / 58

Bootstrapping

Problem: Ciphertexts contain random ’noise’ that grows after

homomorphic evaluation (Add and Mult increase noise).

Once the noise exceeds a certain level, the ciphertext can no longer

be decrypted.

Without a noise-reduction, number of homomorphic operations that

can be performed is limited.

The best noise-reduction that kills all noise: Decryption!

Decryption should be done without releasing the secret key

→ We can release Enc(sk): Circular Encryption

(For a cycle of public/secret key-pairs (pki , ski) for i = 1, ..., n,

encrypt each ski under pk(i mod n)+1.)

Whenever noise level increases beyond a limit, use bootstrapping to

reset it to a fixed level. Bootstrapping = “Valve” at a fixed height

Gentry’s “bootstrapping” theorem: If an encryption scheme can

evaluate its own decryption circuit, then it can evaluate everything

[Gentry’09].

Bootstrapping requires homomorphically evaluating the decryption

circuit.
Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 11 / 58

Bootstrapping

Problem: Ciphertexts contain random ’noise’ that grows after

homomorphic evaluation (Add and Mult increase noise).

Once the noise exceeds a certain level, the ciphertext can no longer

be decrypted.

Without a noise-reduction, number of homomorphic operations that

can be performed is limited.

The best noise-reduction that kills all noise: Decryption!

Decryption should be done without releasing the secret key

→ We can release Enc(sk): Circular Encryption

(For a cycle of public/secret key-pairs (pki , ski) for i = 1, ..., n,

encrypt each ski under pk(i mod n)+1.)

Whenever noise level increases beyond a limit, use bootstrapping to

reset it to a fixed level. Bootstrapping = “Valve” at a fixed height

Gentry’s “bootstrapping” theorem: If an encryption scheme can

evaluate its own decryption circuit, then it can evaluate everything

[Gentry’09].

Bootstrapping requires homomorphically evaluating the decryption

circuit.
Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 11 / 58

Bootstrapping

Problem: Ciphertexts contain random ’noise’ that grows after

homomorphic evaluation (Add and Mult increase noise).

Once the noise exceeds a certain level, the ciphertext can no longer

be decrypted.

Without a noise-reduction, number of homomorphic operations that

can be performed is limited.

The best noise-reduction that kills all noise: Decryption!

Decryption should be done without releasing the secret key

→ We can release Enc(sk): Circular Encryption

(For a cycle of public/secret key-pairs (pki , ski) for i = 1, ..., n,

encrypt each ski under pk(i mod n)+1.)

Whenever noise level increases beyond a limit, use bootstrapping to

reset it to a fixed level. Bootstrapping = “Valve” at a fixed height

Gentry’s “bootstrapping” theorem: If an encryption scheme can

evaluate its own decryption circuit, then it can evaluate everything

[Gentry’09].

Bootstrapping requires homomorphically evaluating the decryption

circuit.
Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 11 / 58

Recryption

A central aspect in Gentry’s FHE (and subsequent schemes).

It allows to refresh a ciphertext: given a ciphertext C , compute a new
ciphertext C ′ with a decreased noise.

By periodically refreshing the ciphertext (e.g., after computing some
gates in f), one can evaluate arbitrarily large circuits f .

Recryption is implemented by evaluating the decryption circuit of the
encryption scheme homomorphically.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 12 / 58

Homomorphic Public-key Encryption
Semantic security

Procedures: (KeyGen, Enc, Dec, Eval)

Semantic security is defined like basic encryption.

Notions of security in basic public-key encryption schemes:

NM-CPA ←−−−−− NM-CCA1 ←−−−−− NM-CCA2y y yx
IND-CPA ←−−−−− IND-CCA1 ←−−−−− IND-CCA2

Malleability of ciphertexts → Homomorphic encryption cannot
achieve IND-CCA2.
Non-malleability (NM): an adversary’s inability to transform a given
ciphertext into a different ciphertext so that their according plaintexts
are “meaningfully related”.

FHE schemes that adopt Gentry’s bootsrapping technique might not
be CCA1-secure.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 13 / 58

Hard Problems
For constructing homomorphic encryption schemes

Shortest Vector Problem (SVP): shortest possible vector in the lattice

Closest Vector Problem (CVP): closest vector to a point

Learning With Errors (LWE): a generalization to “parity with noise”
problem

Polynomial Learning With Errors (PLWE)
Ring Learning With Errors (RLWE)

Sparse Subset Sum Problem (SSSP)

Bounded Distance Decoding (BDD)

Approximate Greatest Common Divisor (AGCD)

Polynomial Coset Problem (PCP): related to Ideal Coset Problem

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 14 / 58

Multi-key FHE

Different clients encrypt data under different FHE keys.

The cloud combines data encrypted under different keys:
Encpk1,...,pkt (f (m1, ...,mt))← Eval(pk1, ..., pkt , f , c1, ..., ct)

FHE does not provide it automatically.

It is possible to construct FHE schemes with above property:
[LATV12] “On-the-fly Multiparty Computation on the Cloud via
Multi-key FHE.”

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 15 / 58

A Construction of FHE [DGHV’10]

1 Construct a Symmetric Somewhat Homomorphic Encryption
(under the approximate GCD assumption)

2 By a simple transformation, convert it to a Public-key Somewhat
Homomorphic Encryption
(under the approximate GCD assumption)

3 Use Gentry’s techniques to have a public-key FHE
(under approximate GCD + sparse subset sum)

Approximate GCD Problem

Given many xi = si + qip, output p

Example parameters: si ∼ 2λ, p ∼ 2λ
2
, qi ∼ 2λ

5

(λ: security parameter)

Best known attacks (lattice-based): ∼ 2λ time

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 16 / 58

A Construction of FHE [DGHV’10]
Step 1: Constructing a symmetric homomorphic encryption scheme

Secret key

large odd number p

Encryption steps of a bit m

Choose at random large q and small r
c = pq + 2r + m
If 2r + m� p then ciphertext is close to a multiple of p
Parameters: |r | = n, |p| = n2 and |q| = n5

Decryption

m ≡ (c mod p) mod 2

Why is it homomorphic?

c1 = pq1 + 2r1 + m1, c2 = pq2 + 2r2 + m2

c1 + c2 = (q1 + q2)p + 2(r1 + r2) + (m1 + m2)
If (r1 + r2)� p

2 ⇒ (c1 + c2 mod p) mod 2 ≡ m1 + m2(mod2)
Noise = 2× (Initial noise)
c1c2 = (q1q2p + 2q1r2 + q1m2 + 2q2r1 + q2m1)p + 2(2r1r2 + r1m2 + m1r2) + m1m2

If (2r1r2 + r1m2 + m1r2)� p
2 ⇒ (c1c2 mod p) mod 2 ≡ m1m2(mod2)

Noise = (Initial noise)2

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 17 / 58

Comparison of Fully Homomorphic Encryption Schemes

Scheme Year Underlying
Problems

Asymptotic Runtime Concrete Runtime

Gentry: A Fully Homomorphic
Encryption Scheme

2009 BDDP +
SSSP

O(λ3.5) per gate for ciphertext
refreshing

NA

van Dijk, Gentry, Halevi,
Vaikuntanathan: FHE over the
Integers

2010 AGCD +
SSSP

Public key size: O(λ10), no gate
cost given

NA

Smart, Vercauteren: FHE with
Relatively Small Key and Cipher-
text Sizes

2010 PCP +
SSSP

Key generation: O(log n.n2.5) Key generation: several
hours even for small pa-
rameters, for larger pa-
rameters the keys could
not be generated

Brakerski, Vaikuntanathan: Effi-
cient FHE from (standard) LWE

2011 DLWE Evaluation key size:
O(λ2C log(λ))

-

Brakerski, Vaikuntanathan:
FHE from Ring-LWE and
Security for Key Dependent
Messages

2011 PLWE Very cheap key generation, un-
known for bootstrapping

-

Brakerski, Gentry, Vaikun-
tanathan: FHE without
Bootstrapping

2011 RLWE Per-gate computation overhead
O(d3λ log λ) without boot-
strapping, O(λ2 log λ) with
bootstrapping

36 hours for an AES en-
cryption on a supercom-
puter

d: Depth of the circuit, n: Dimension of the lattice, C: A very large parameter for ensuring bootstrappability

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 18 / 58

Comparison of Fully Homomorphic Encryption Schemes
Continued

Gentry, Halevi: Implementing
Gentry’s Fully-Homomorphic
Encryption Scheme

2011 SVP +
BDD

Key generation: O(log n.n1.5) Bootstrapping: From 30s
(for small setting) to 30
min (for large setting)

Coron, Naccache, Tibouchi:
Public Key Compression and
Modulus Switching for FHE
over the Integers

2012 DAGCD +
SSSP

Public key size: O(λ5 log(λ)),
no gate cost given

Recryption: 11 min

Rohloff, Cousins: A Scalable Im-
plementation of Fully Homomor-
phic Encryption Built on NTRU

2014 SVP +
RLWE

- Recryption: 275s on 20
cores with 64-bit security

Halevi, Shoup: Bootstrapping
for HElib

2015 RLWE - Vectors of 1024 elements
from GF (216) was re-
crypted in 5.5 min at se-
curity level ≈ 76, single
CPU core

Table From: Armknecht et al. [ABCGJRS’15]

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 19 / 58

Fewer Multiplications?
Symmetric ciphers for FHE, MPC, etc

FHE schemes typically come with a ciphertext expansion in the order
of 1000 to 1000000.

Compression method: instead of sending c = HEpk(m) to the cloud,
pick a random key k and send c ′ = (HEpk(k),Ek(m)).

For long messages, |c ′|/|m| ≈ 1.

By homomorphically evaluating the decryption circuit CE−1 , the cloud
recovers c = HEpk(m) = CE−1(HEpk(k); Ek(m)).

Symmetric encryption algorithms for FHE, MPC, etc:

LowMC (block cipher): eprint 2016/687
Kreyvium (stream cipher): eprint 2015/113
FLIP (stream cipher): eprint 2016/254

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 20 / 58

Functional Encryption

A public key FE scheme for a class of circuits Cλ is a tuple of PPT
algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) [O’N10, BSW12]):

(msk , pk)← FE .Setup(1λ): FE.Setup takes as input the security
parameter λ and outputs the master secret key msk and public key
pk .

skC ← FE .KeyGen(msk ,C): FE.KeyGen takes as input the master
secret key and a circuit C ∈ Cλ and outputs the functional secret key
skC .

c ← FE .Enc(pk,m): FE.Enc takes as input the public key and
message m ∈ {0, 1}∗ and outputs the ciphertext c .

y ← FE .Dec(skC , c): FE.Dec takes as input the functional secret key
and ciphertext and outputs y ∈ {0, 1}∗.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 21 / 58

FHE and FE

FHE: compute Enc(f (x)) from Enc(x) for any function f .

FE: compute f (x) from Enc(x).

For functions of the type Encf , where Encf (x) = Enc(f (x)) is a
re-encryption of f (x), FE would be very close to constructing an FHE
scheme.

Randomized FE can be used for constructing FHE [ABFGGTW’13].

Randomized FE (FE with randomized functionality): privacy-aware
auditing, differentially private data release, proxy re-encryption, ...

rFE is not much more difficult to construct than the standard FE.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 22 / 58

Obfuscation

Program obfuscation: to scramble a computer program, hiding its
implementation details (making it hard to reverse-engineer), while
preserving the functionality (i.e, input-output behaviour) of the
program.

Obfuscation:

The cloud is given an “encrypted” program E (P).
For any input x , cloud can compute E (P)(x) = P(x).
Cloud learns nothing about P, except {xi ,P(xi)}.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 23 / 58

iO

Notion of indistinguishability obfuscation (iO) has emerged as the
central notion of obfuscation.
iO requires that obfuscations iO(C1), iO(C2) of any two functionally
equivalent circuits C1 and C2 (i.e., whose outputs agree on all inputs)
from some class of bounded-size circuits C are computationally
indistinguishable.
All candidate constructions of iO rely on candidate constructions of
multilinear maps, all of which have non-trivial attacks.

Formal definition
A uniform PPT machine is called an iO for a circuit class {Cλ} if

Correctness: For all security parameters λ ∈ N, for all C ∈ Cλ and all inputs x , we
have Pr [C ′(x) = C(x) | C ′ ← iO(λ,C)] = 1

Security: For any PPT distinguisher D, there exists a negligible function ε such
that for all security parameters λ ∈ N, for all pairs of circuits C0,C1 ∈ Cλ, we have
if C0(x) = C1(x) for all inputs x then
| Pr [D(iO(λ,C0)) = 1]− Pr [D(iO(λ,C1)) = 1] |≤ ε(λ)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 24 / 58

FHE and Obfuscation

FHE does not provide obfuscation automatically.

It is possible to use obfuscated circuits to obtain Randomized
Functional Encryption schemes suitable for FHE constructions
[ABFGGTW’13]:
Obfuscated circuits → Randomized Functional Encryption → FHE

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 25 / 58

Inefficient iO

It is important that the obfuscator is efficient (polynomial-time).

A trivial inefficient iO with running time poly(|C |, λ).2n exists
unconditionally: Simply output the function table of C (i.e. the
output of C on all possible inputs).
C : the circuit to be obfuscated
λ: security parameter
n: input length of C

In “standard” (efficient) iO, the running time and size of the
obfuscator is required to be poly(|C |, λ) (polylogarithmic in the size
of the truth table of C).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 26 / 58

XiO

XiO: Exponentially-Efficient iO
Lin et al., Indistinguishability Obfuscation with Non-trivial efficiency,
(PKC’16), eprint 2016/006

Inefficient iO with running time poly(|C |, λ).2n exists unconditionally.

In XiO, running-time of the obfuscator may still be trivial
(poly(|C |, λ).2n), but the obfuscated code is just slightly smaller than
the truth table of C (poly(|C |, λ).2n(1−ε) where ε > 0).

Succinct FE: A compact FE for a class of circuits that output only a
single bit.

There is NOT any black-box deduction from succinct FE to iO

There is black-box deduction from succinct FE to XiO

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 27 / 58

Other topics

Multiparty Computation (MPC)

Delegation of Computation

Searchable Encryption

Attribute-based Encryption

...

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 28 / 58

Secure Deduplication

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 29 / 58

Cloud Storage

A

{A}

B

{A,B}
H(F)

Server needs to track which
users have access to F

When B uploads F,
server updates tag

Smarter: client-side deduplication where users send H(F)
[Inside Dropbox, Drago et al., IMC’12]

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 30 / 58

Cloud Storage

A

{A}

B

{A,B}
H(F)

Server needs to track which
users have access to F

When B uploads F,
server updates tag

Smarter: client-side deduplication where users send H(F)
[Inside Dropbox, Drago et al., IMC’12]

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 30 / 58

Cloud Storage

A

{A}

B

{A,B}

H(F)

Server needs to track which
users have access to F

When B uploads F,
server updates tag

Smarter: client-side deduplication where users send H(F)
[Inside Dropbox, Drago et al., IMC’12]

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 30 / 58

Cloud Storage

A

{A}

B

{A,B}
H(F)

Server needs to track which
users have access to F

When B uploads F,
server updates tag

Smarter: client-side deduplication where users send H(F)
[Inside Dropbox, Drago et al., IMC’12]

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 30 / 58

Simple client-side deduplication

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 31 / 58

Deduplication

Deduplication: store only a single copy of each file (or block)

Can save more than 90% of storage in many business scenarios
(major savings in media files and software)

Server-side deduplication: Data is always uploaded, but only one copy
is stored on the cloud.

+ saves storage

Client-side deduplication: Data is uploaded if it is not available on
the cloud.

+ saves storage
+ saves bandwidth

- Encryption is at odds with cross-user deduplication: solutions exist to
derive key from file itself [MLE, MLE2, iMLE, Dupless, PAKE-based, ...]

- Serious privacy concerns may arise when deduplication is used by
popular storage services (side-channels).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 32 / 58

Convergent Encryption
Douceur et al. (ICDCS’02)

Pf : File plaintext

E : Symmetric key encryption

F : Public key encryption

(Ku,K
′
u): Public/private key pair for each user u

Cf = XKu(Pf) =< cf ,Mf > in which

cf = EH(Pf)(Pf)

Mf = {µu = FKu (H(Pf)) ∧ u ∈ Uf }

Pf = X−1
K ′u

(Cf) = E−1

F−1

K ′u
(µu)

(cf)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 33 / 58

MLE
Bellare et al. (EUROCRYPT’13)

Alice:

kA ← K (P,mA)
cA ← E (kA,mA)
tA ← T (P, cA)
upload cA to the server

Bob:

kB ← K (P,mB)
cB ← E (kB ,mB)
tB ← T (P, cB)
upload cB to the server

Tag correctness: if tA = tB then mA = mB and the server
deduplicates.

Duplicate faking attack: if tA = tB but mA 6= mB (integrity
violation).

CE is a special case of the MLE where k = H(m) and T = H(c).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 34 / 58

MLE
Privacy

Can we get IND-CPA style privacy for MLE?

Message recovery security

Consider a set S = {m1, ...,mn}
Given c ← E (K (mi),mi) where i ← {1, 2, . . . , n}
Find mi

BruteForceS(c)

For mi ∈ S :
m′ ← D(K (mi), c)
If mi = m′ then return mi

Privacy is not possible for predictable messages.
MLE schemes cannot achieve semantic-security-style privacy.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 35 / 58

MLE
Notions for Privacy

PRV$-CDA −−−−→ PRV$-CDA-Ay 6x y 6x
PRV-CDA 6−−−−→ PRV-CDA-A

CDA: Chosen-Distribution Attack
PRV-CDA: Encryptions of two unpredictable messages should be
indistinguishable (for non-adaptive adversaries).
PRV$-CDA: Encryption of an unpredictable message must be
indistinguishable from a random string of the same length (for
non-adaptive adversaries).
Tag Consistency (TC): hard to create (M,C) s.t.:
T (C) = T (E (K (M),M)) but D(K (M),C) = M ′ 6= M
Strong Tag Consistency (STC): hard to create (M,C) s.t.:
T (C) = T (E (K (M),M)) but D(K (M),C) = ⊥
TC & STC: Preserve integrity

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 36 / 58

MLE schemes in RO

CE: K = H(M), C = E (K ,M), T = H(C)

HCE1: K = H(M), C = E (K ,M)||H(K), T = H(K)

HCE1 does not provide TC (vulnerable to duplicate faking attack).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 37 / 58

MLE schemes
in RO

MLE schemes built using symmetric encryption scheme
SE = (SK ; SE ; SD) and hash function family H = (HK ; H).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 38 / 58

MLE
RCE

CE[E]: Set L = 0n, use C2 as the key for CTR[E], exclude C2 from the
ciphertext, tag generation hashes the ciphertext: E(MD[E](M); P).

HCE2[E]: Use C2 as the encryption key for CTR[E]. Exclude C2 from
the ciphertext.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 39 / 58

MLE
Constructions without RO

D-PKE: Deterministic Public-Key Encryption
CI-H: Correlated-input-secure Hash Function

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 40 / 58

MLE for Lock-dependent messages: MLE2
Abadi et al. (CRYPTO’13)

Strengthened the notions of security by considering plaintext
distributions that may depend on the public parameters of the
schemes (lock-dependent messages).

First (main) construction (A fully randomized scheme): R-MLE2

tag τ = (g r , g rh(m))
Suppose τ1 = (g1, h1) = (g r1 , g r1h(m1))
and τ2 = (g2, h2) = (g r2 , g r2h(m2))

Equality testing: e(g1, h2)
?
= e(g2, h1)

If e(g r1 , g r2h(m2)) = e(g r2 , g r1h(m1)) then h(m1) = h(m2).

Second construction has a deterministic ciphertext component for
more efficient equality testing.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 41 / 58

iMLE
Bellare and Keelveedhi (PKC’15)

iMLE: Interactive message-locked encryption

Using interaction, it provides security for messages that are both
correlated and dependent on the public system parameters.

They first construct a seemingly weak primitive:
MLE-Without-Comparison (MLEWC)

To enable comparison between ciphertexts, they introduce FCHECK
which employs an interactive protocol based on a FHE scheme which
transforms the MLEWC into iMLE.

FCHECK is a theoretical construction.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 42 / 58

Other schemes
for secure deduplication

DupLESS (USENIX Security 2013): Introduces a third-party key
server and uses MLE. Each client engages with the key server in an
oblivious pseudo-random protocol (OSRP) to obtain a
message-derived key.

Stanek et al. (FC’14): Notion of popularity + threshold cryptosystem

PerfectDedup (DPM’15): Considers notion of popularity for
block-level deduplication. Uses convergent encryption and perfect
hashing.

µR-MLE2 (ACISP’16): reduces the overhead of R-MLE2 by using
static and dynamic decision trees.

...

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 43 / 58

Other related topics

Proof-of-ownership (PoW): enables a client to prove the possession of
a file (rather than just some short information about it).

Proof-of-Retrievability (PoR): Interactive protocols that
cryptographically prove the retrievability of outsourced data.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 44 / 58

Side channels in deduplication

joint work with Frederik Armknecht, Colin Boyd, Gareth T. Davies, and Kristian Gjøsteen

eprint 2016/977

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 45 / 58

Inherent Side Channel

Classical client-side deduplication: server only asks client to send file if not
already stored by the server

⇒ side channel (“existence-of-file attack”)

Adversarial client can learn if (low-entropy) files are stored or not

Identifying files, learning file contents, covert channels, ...

Examples: Clinical lab test results, figures in tax returns, pay stubs and

contracts, bank letters including password or PIN, ...

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 46 / 58

Inherent Side Channel

Classical client-side deduplication: server only asks client to send file if not
already stored by the server

⇒ side channel (“existence-of-file attack”)

Adversarial client can learn if (low-entropy) files are stored or not

Identifying files, learning file contents, covert channels, ...

Examples: Clinical lab test results, figures in tax returns, pay stubs and

contracts, bank letters including password or PIN, ...

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 46 / 58

Inherent Side Channel

Classical client-side deduplication: server only asks client to send file if not
already stored by the server

⇒ side channel (“existence-of-file attack”)

Adversarial client can learn if (low-entropy) files are stored or not

Identifying files, learning file contents, covert channels, ...

Examples: Clinical lab test results, figures in tax returns, pay stubs and

contracts, bank letters including password or PIN, ...

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 46 / 58

Randomized solution

Idea: To use a randomized threshold for each file
[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE
Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that
it has enough copies.
If thr is chosen uniformly from the range {1, . . . ,B} for some integer B
then an adversary launching the existence-of-file attack will learn nothing
if thr ∈ {2, . . . ,B− 1}.
The expected number of uploads of a file is B+1

2 .

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 47 / 58

Randomized solution

Idea: To use a randomized threshold for each file
[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE
Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that
it has enough copies.

If thr is chosen uniformly from the range {1, . . . ,B} for some integer B
then an adversary launching the existence-of-file attack will learn nothing
if thr ∈ {2, . . . ,B− 1}.
The expected number of uploads of a file is B+1

2 .

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 47 / 58

Randomized solution

Idea: To use a randomized threshold for each file
[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE
Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that
it has enough copies.
If thr is chosen uniformly from the range {1, . . . ,B} for some integer B
then an adversary launching the existence-of-file attack will learn nothing
if thr ∈ {2, . . . ,B− 1}.

The expected number of uploads of a file is B+1
2 .

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 47 / 58

Randomized solution

Idea: To use a randomized threshold for each file
[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE
Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that
it has enough copies.
If thr is chosen uniformly from the range {1, . . . ,B} for some integer B
then an adversary launching the existence-of-file attack will learn nothing
if thr ∈ {2, . . . ,B− 1}.
The expected number of uploads of a file is B+1

2 .

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 47 / 58

Deduplication Strategies

A deduplication strategy DS is characterized by its probability distribution
DS(F , λ) = (p1(F , λ), p2(F , λ), . . .) where

pi (F , λ) = Pr [i ← DS.Alg(F , λ)]

A threshold selection algorithm DS.Alg is a probabilistic procedure that
outputs a threshold thr ∈ N:

thr← DS.Alg(F, λ)

DS is file-oblivious if the distributions are independent of the file:

DS.Alg(F , λ) = DS.Alg(F ∗, λ), ∀λ ∈ N, ∀F ,F ∗ ∈ {0, 1}∗

DS is finite if for ∀λ and ∀F , there exists an upper bound B = B(F , λ)
such that pj(F , λ) = 0 for ∀j > B(F , λ).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 48 / 58

Deduplication Strategies

A deduplication strategy DS is characterized by its probability distribution
DS(F , λ) = (p1(F , λ), p2(F , λ), . . .) where

pi (F , λ) = Pr [i ← DS.Alg(F , λ)]

A threshold selection algorithm DS.Alg is a probabilistic procedure that
outputs a threshold thr ∈ N:

thr← DS.Alg(F, λ)

DS is file-oblivious if the distributions are independent of the file:

DS.Alg(F , λ) = DS.Alg(F ∗, λ), ∀λ ∈ N, ∀F ,F ∗ ∈ {0, 1}∗

DS is finite if for ∀λ and ∀F , there exists an upper bound B = B(F , λ)
such that pj(F , λ) = 0 for ∀j > B(F , λ).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 48 / 58

Deduplication Strategies

A deduplication strategy DS is characterized by its probability distribution
DS(F , λ) = (p1(F , λ), p2(F , λ), . . .) where

pi (F , λ) = Pr [i ← DS.Alg(F , λ)]

A threshold selection algorithm DS.Alg is a probabilistic procedure that
outputs a threshold thr ∈ N:

thr← DS.Alg(F, λ)

DS is file-oblivious if the distributions are independent of the file:

DS.Alg(F , λ) = DS.Alg(F ∗, λ), ∀λ ∈ N, ∀F ,F ∗ ∈ {0, 1}∗

DS is finite if for ∀λ and ∀F , there exists an upper bound B = B(F , λ)
such that pj(F , λ) = 0 for ∀j > B(F , λ).

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 48 / 58

Deduplication Strategies

For each file, server employs deduplication strategy DS = (p1, p2, p3, . . .)
p0 = 0 thr← DS.Alg(F, λ)

⇒ server asks for file thr times before saying it already has it

Examples:

A server that does not defend against the existence-of-file attack:
DSdnd = (1, 0, . . .)

Threshold chosen uniformly at random: DSU = (1
B ,

1
B , . . . ,

1
B , 0, . . .)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 49 / 58

Deduplication Strategies

For each file, server employs deduplication strategy DS = (p1, p2, p3, . . .)
p0 = 0 thr← DS.Alg(F, λ)

⇒ server asks for file thr times before saying it already has it

Examples:

A server that does not defend against the existence-of-file attack:
DSdnd = (1, 0, . . .)

Threshold chosen uniformly at random: DSU = (1
B ,

1
B , . . . ,

1
B , 0, . . .)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 49 / 58

Deduplication Strategies

For each file, server employs deduplication strategy DS = (p1, p2, p3, . . .)
p0 = 0 thr← DS.Alg(F, λ)

⇒ server asks for file thr times before saying it already has it

Examples:

A server that does not defend against the existence-of-file attack:
DSdnd = (1, 0, . . .)

Threshold chosen uniformly at random: DSU = (1
B ,

1
B , . . . ,

1
B , 0, . . .)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 49 / 58

Deduplication Strategies

For each file, server employs deduplication strategy DS = (p1, p2, p3, . . .)
p0 = 0 thr← DS.Alg(F, λ)

⇒ server asks for file thr times before saying it already has it

Examples:

A server that does not defend against the existence-of-file attack:
DSdnd = (1, 0, . . .)

Threshold chosen uniformly at random: DSU = (1
B ,

1
B , . . . ,

1
B , 0, . . .)

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 49 / 58

Observations
For each strategy, we can define two properties:

Expected dedup threshold E =
∑∞

i=1 i .pi

Statistical distance ∆ = 1
2

∑∞
i=0 |pi − pi+1|

E is measure of bandwidth overhead (efficiency).
∆ is a relative measure of security of the strategy.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 50 / 58

Defining Security: Existence-of-file Attack

Formalize the IND-EFA game between challenger and an adversary:

A

Ostore

F

b′

b
$←− {0, 1}

thr ← DS.Alg(F)
ctr ← b

store():
ctr ← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

A chooses a file F from the filespace. A attempts to distinguish the two
distributions DS and DS∗, where DS∗ is the deduplication strategy probability
function shifted one position to the left.

The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case
increments the counter by one to simulate initial storage of F .

A has access to a store() oracle which increments the storage counter and
responds with the appropriate signal sig.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 51 / 58

Defining Security: Existence-of-file Attack

Formalize the IND-EFA game between challenger and an adversary:

A

Ostore

F

b′

b
$←− {0, 1}

thr ← DS.Alg(F)
ctr ← b

store():
ctr ← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

A chooses a file F from the filespace. A attempts to distinguish the two
distributions DS and DS∗, where DS∗ is the deduplication strategy probability
function shifted one position to the left.

The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case
increments the counter by one to simulate initial storage of F .

A has access to a store() oracle which increments the storage counter and
responds with the appropriate signal sig.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 51 / 58

Defining Security: Existence-of-file Attack

Formalize the IND-EFA game between challenger and an adversary:

A

Ostore

F

b′

b
$←− {0, 1}

thr ← DS.Alg(F)
ctr ← b

store():
ctr ← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

A chooses a file F from the filespace. A attempts to distinguish the two
distributions DS and DS∗, where DS∗ is the deduplication strategy probability
function shifted one position to the left.

The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case
increments the counter by one to simulate initial storage of F .

A has access to a store() oracle which increments the storage counter and
responds with the appropriate signal sig.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 51 / 58

Defining Security: Existence-of-file Attack

Formalize the IND-EFA game between challenger and an adversary:

AOstore

F

b′

b
$←− {0, 1}

thr ← DS.Alg(F)
ctr ← b

store():
ctr ← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

sig

A chooses a file F from the filespace. A attempts to distinguish the two
distributions DS and DS∗, where DS∗ is the deduplication strategy probability
function shifted one position to the left.

The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case
increments the counter by one to simulate initial storage of F .

A has access to a store() oracle which increments the storage counter and
responds with the appropriate signal sig.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 51 / 58

Defining Security: Existence-of-file Attack

Formalize the IND-EFA game between challenger and an adversary:

AOstore

F

b′

b
$←− {0, 1}

thr ← DS.Alg(F)
ctr ← b

store():
ctr ← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

sig

A chooses a file F from the filespace. A attempts to distinguish the two
distributions DS and DS∗, where DS∗ is the deduplication strategy probability
function shifted one position to the left.

The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case
increments the counter by one to simulate initial storage of F .

A has access to a store() oracle which increments the storage counter and
responds with the appropriate signal sig.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 51 / 58

Defining Security: Existence-of-file Attack

General IND-EFA experiment for deduplication schemes:

ExpIND-EFA
DS.Alg, A(λ) :

b
$←− {0, 1}

F ← A
thr← DS.Alg(F , λ)
ctr← b
b′ ← Astore(λ)
return b′ = b

store():
ctr← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

AdvIND-EFA
DS, A (λ)

def
=

∣∣∣∣2 · Pr [ExpIND-EFA
DS, A (λ) = 1

]
− 1

∣∣∣∣
Scheme is IND-EFA Secure if A’s advantage is no better than guessing.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 52 / 58

How Effective is a Dedup Strategy that Defends?

For the uniform strategy mentioned earlier
DSU = (1

B ,
1
B , . . . ,

1
B , 0, . . .)

E U = 2 · 1
B + · · ·+ B · 1

B = B+1
2

∆U = 1
B

Tradeoff: bandwidth overhead ←→ security level

Natural metric: E ·∆

Leakage

Efficiency

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 53 / 58

How Effective is a Dedup Strategy that Defends?

For the uniform strategy mentioned earlier
DSU = (1

B ,
1
B , . . . ,

1
B , 0, . . .)

E U = 2 · 1
B + · · ·+ B · 1

B = B+1
2

∆U = 1
B

Tradeoff: bandwidth overhead ←→ security level

Natural metric: E ·∆

Leakage

Efficiency

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 53 / 58

How Effective is a Dedup Strategy that Defends?

For the uniform strategy mentioned earlier
DSU = (1

B ,
1
B , . . . ,

1
B , 0, . . .)

E U = 2 · 1
B + · · ·+ B · 1

B = B+1
2

∆U = 1
B

Tradeoff: bandwidth overhead ←→ security level

Natural metric: E ·∆

Leakage

Efficiency

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 53 / 58

How Effective is a Dedup Strategy that Defends?

For the uniform strategy mentioned earlier
DSU = (1

B ,
1
B , . . . ,

1
B , 0, . . .)

E U = 2 · 1
B + · · ·+ B · 1

B = B+1
2

∆U = 1
B

Tradeoff: bandwidth overhead ←→ security level

Natural metric: E ·∆

Leakage

Efficiency

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 53 / 58

How Effective is a Dedup Strategy that Defends?

For the uniform strategy mentioned earlier
DSU = (1

B ,
1
B , . . . ,

1
B , 0, . . .)

E U = 2 · 1
B + · · ·+ B · 1

B = B+1
2

∆U = 1
B

Tradeoff: bandwidth overhead ←→ security level

Natural metric: E ·∆

Leakage

Efficiency

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 53 / 58

Theorem

For any deduplication strategy DS with expected threshold E and security
level ∆,

E U ·∆U ≤ E ·∆.

where E U and ∆U are the expected threshold and security level of the
uniformly random strategy, respectively.

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 54 / 58

Proof Outline

Theorem 1

Let DS = (p1, p2, . . . , pB, 0, . . .) be any deduplication strategy, and let ∆
and E be the corresponding values. Let π be a permutation on
{1, 2, . . . ,B} such that DS′ = (pπ(1), pπ(2), . . . , pπ(B), 0, . . .) is a
non-increasing deduplication strategy with corresponding values ∆′ and E ′.
Then ∆′ ≤ ∆ and E ′ ≤ E .

For any DS, making it non-increasing does not increase E ·∆

Theorem 2

Let DS′ = (p′1, p
′
2, . . . , p

′
B, 0, . . .) be a non-increasing deduplication

strategy, and let ∆′ and E ′ be its corresponding values. Then
1 + 1

B ≤ E ′ ·∆′.

Given non-increasing strategy, making it ’more uniform’ does not increase
E ·∆

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 55 / 58

Future work

Is this a realistic tradeoff: perhaps E s ·∆ or other metrics?

Can we extend this formalism to other attack vectors?

Extension to other related fields, e.g. cache privacy?

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 56 / 58

Thank you!
Questions?

Mohsen Toorani Cryptography for Cloud Security Finse Winter School 2017 57 / 58

	Computing on encrypted data
	Secure Deduplication

