Cryptography for Cloud Security

Mohsen Toorani

Department of Informatics, University of Bergen

Simula@UiB

Coins Winter School Finse, Norway May 12, 2017

Title

Cryptographic Tools for Cloud Security Funded by the Norwegian Research Council (IKTPLUSS)

Partners

- NTNU (Department of Information Security and Communication Technology & Department of Mathematics)
- Simula@UiB

ntnu.edu/iik/cloudcrypto

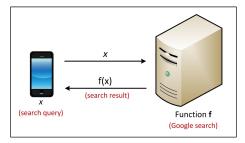
Computing on encrypted data

- (Fully) Homomorphic Encryption
- Functional Encryption
- Obfuscation

2 Secure Deduplication

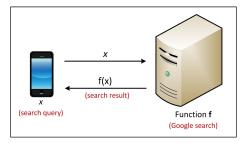
- Deduplication schemes
- Side channels in deduplication

Computing on encrypted data



э

Computing on encrypted data



Privacy?

Mohsen Toorani

Cryptography for Cloud Security

Finse Winter School 2017

Homomorphic Encryption

- A way to delegate processing of data without giving access to it
- Encryption schemes that allow computations on the ciphertexts *E_k*[*m*₁] ● *E_k*[*m*₂] = *E_k*[*m*₁ ∘ *m*₂]
- Applications:
 - E-voting: Votes are encrypted as 1 or 0. Ciphertexts are aggregated before decryption. No individual vote is revealed. Requires additive homomorphic encryption: ○ is +
 - Secure cloud computing: Requires fully homomorphic encryption (homomorphic properties for both + and ×)

Homomorphic Encryption

Multiplicative homomorphic encryption

- Unpadded RSA: $m_1^e imes m_2^e = (m_1 imes m_2)^e$
- ElGamal: Given public key $(g, h = g^a)$, ciphertexts $(g^{r_1}, h^{r_1}m_1)$ and $(g^{r_2}, h^{r_2}m_2)$, multiple both components $(g^{r_1+r_2}, h^{r_1+r_2}m_1m_2)$

Additive homomorphic encryption

Paillier cryptosystem [Eurocrypt'99]: Additive on \mathbb{Z}_n

- Public key: (n,g) where p and q: two large prime, n = pq, $g \in_R \mathbb{Z}_{n^2}^*$
- Private key: (λ, μ) where $\lambda = lcm(p-1, q-1)$, and $\mu = (\frac{g^{\lambda}modn^2-1}{n})^{-1}modn$
- For encrypting $m \in \mathbb{Z}_n$: Select random $r \in_R \mathbb{Z}_n^*$ Compute $c = g^m r^n \mod n^2$
- For decryption: compute $m = \mu \frac{c^{\lambda} mod n^2 1}{n} \mod n$

3

6 / 58

Homomorphic Encryption

Continued

Examples of schemes with limited functionality

- RSA works for MULT (mod N)
- Paillier works for ADD (XOR)
- BGN05 works for quadratic formulas
- MGH08 works for low-degree polynomials (size of c ← Eval(pk, f, c₁, ..., c_t) grows exponentially with degree of f)

Somewhat Homomorphic Encryption (SHE)

• Eval only works for some functions f

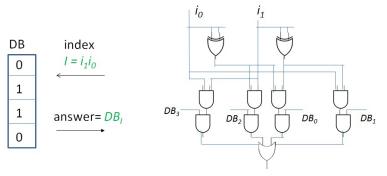
Fully Homomorphic Encryption (FHE)

- Fully means that it works for any arbitrary function f
- Supports both addition and multiplication
- Before Gentry's work (2009), no FHE scheme

(日) (同) (日) (日)

Why both addition and multiplication?

- Because {XOR, AND} is Turing-complete: any function can be written as a combination of XOR and AND gates.
- If you can compute XOR and AND on encrypted bits, you can compute ANY function on encrypted inputs.



Example: Searching a database

Homomorphic Public-key Encryption

• Procedures: (KeyGen, Enc, Dec, Eval)

 $(\textit{sk},\textit{pk}) \leftarrow \textit{KeyGen}(\lambda)$

• Correctness: For any function f in supported family F,

$$c_1 \leftarrow Enc_{pk}(m_1), \dots, c_t \leftarrow Enc_{pk}(m_t)$$

 $c^* \leftarrow Eval_{pk}(f, c_1, \dots, c_t)$
 $Dec_{sk}(c^*) = f(m_1, \dots, m_t)$

- No information about $m_1, ..., m_t$, and $f(m_1, ..., m_t)$ is leaked.
- Compactness: complexity of decrypting c* does not depend on complexity of f.

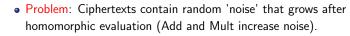
- Onstruct a useful "Somewhat Homomorphic Encryption" scheme
- **2** Modify your SHE scheme and make it bootstrappable if it is not

(Note: It is also possible to construct FHE schemes without bootstrapping).

Threshold	 Problem: Ciphertexts contain random 'noise' that grows after homomorphic evaluation (Add and Mult increase noise).
	 Once the noise exceeds a certain level, the ciphertext can no longer be decrypted.
	 Without a noise-reduction, number of homomorphic operations that can be performed is limited.
	The best noise-reduction that kills all noise: Decryption!
	 Decryption should be done without releasing the secret key
Noise = 0	\rightarrow We can release <i>Enc</i> (<i>sk</i>): Circular Encryption
	(For a cycle of public/secret key-pairs (pk_i, sk_i) for $i = 1,, n$,
	encrypt each sk_i under $pk_{(i \mod n)+1}$.)
	• Whenever noise level increases beyond a limit, use bootstrapping to

- reset it to a fixed level. Bootstrapping = "Valve" at a fixed height
- Gentry's "bootstrapping" theorem: If an encryption scheme can evaluate its own decryption circuit, then it can evaluate everything [Gentry'09].
- Bootstrapping requires homomorphically evaluating the decryption circuit.

Threshold



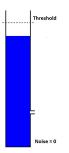
- Once the noise exceeds a certain level, the ciphertext can no longer be decrypted.
- Without a noise-reduction, number of homomorphic operations that can be performed is limited.
- The best noise-reduction that kills all noise: Decryption!
- Decryption should be done without releasing the secret key
 - \rightarrow We can release *Enc(sk)*: Circular Encryption

(For a cycle of public/secret key-pairs (pk_i, sk_i) for i = 1, ..., n, encrypt each sk_i under $pk_{(i \mod n)+1}$.)

- Whenever noise level increases beyond a limit, use bootstrapping to reset it to a fixed level. Bootstrapping = "Valve" at a fixed height
- Gentry's "bootstrapping" theorem: If an encryption scheme can evaluate its own decryption circuit, then it can evaluate everything [Gentry'09].
- Bootstrapping requires homomorphically evaluating the decryption circuit.

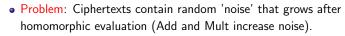
Noise = 0

Finse Winter School 2017



- Problem: Ciphertexts contain random 'noise' that grows after homomorphic evaluation (Add and Mult increase noise).
- Once the noise exceeds a certain level, the ciphertext can no longer be decrypted.
- Without a noise-reduction, number of homomorphic operations that can be performed is limited.
- The best noise-reduction that kills all noise: Decryption!
- Decryption should be done without releasing the secret key
 - \rightarrow We can release *Enc(sk)*: Circular Encryption
 - (For a cycle of public/secret key-pairs (pk_i, sk_i) for i = 1, ..., n, encrypt each sk_i under $pk_{(i \mod n)+1}$.)
- Whenever noise level increases beyond a limit, use bootstrapping to reset it to a fixed level. Bootstrapping = "Valve" at a fixed height
- Gentry's "bootstrapping" theorem: If an encryption scheme can evaluate its own decryption circuit, then it can evaluate everything [Gentry'09].
- Bootstrapping requires homomorphically evaluating the decryption circuit.

Finse Winter School 2017



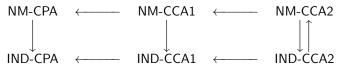
- Once the noise exceeds a certain level, the ciphertext can no longer be decrypted.
- Without a noise-reduction, number of homomorphic operations that can be performed is limited.
- The best noise-reduction that kills all noise: Decryption!
- Decryption should be done without releasing the secret key
 - \rightarrow We can release Enc(sk): Circular Encryption
 - (For a cycle of public/secret key-pairs (pk_i, sk_i) for i = 1, ..., n, encrypt each sk_i under $pk_{(i \mod n)+1}$.)
- Whenever noise level increases beyond a limit, use bootstrapping to reset it to a fixed level. Bootstrapping = "Valve" at a fixed height
- Gentry's "bootstrapping" theorem: If an encryption scheme can evaluate its own decryption circuit, then it can evaluate everything [Gentry'09].
- Bootstrapping requires homomorphically evaluating the decryption circuit.

Finse Winter School 2017

- A central aspect in Gentry's FHE (and subsequent schemes).
- It allows to refresh a ciphertext: given a ciphertext *C*, compute a new ciphertext *C'* with a decreased noise.
- By periodically refreshing the ciphertext (e.g., after computing some gates in *f*), one can evaluate arbitrarily large circuits *f*.
- Recryption is implemented by evaluating the decryption circuit of the encryption scheme homomorphically.

Homomorphic Public-key Encryption

- Procedures: (KeyGen, Enc, Dec, Eval)
- Semantic security is defined like basic encryption.
- Notions of security in basic public-key encryption schemes:



 Malleability of ciphertexts → Homomorphic encryption cannot achieve IND-CCA2.

Non-malleability (NM): an adversary's inability to transform a given ciphertext into a different ciphertext so that their according plaintexts are "meaningfully related".

• FHE schemes that adopt Gentry's bootsrapping technique might not be CCA1-secure.

For constructing homomorphic encryption schemes

- Shortest Vector Problem (SVP): shortest possible vector in the lattice
- Closest Vector Problem (CVP): closest vector to a point
- Learning With Errors (LWE): a generalization to "parity with noise" problem
 - Polynomial Learning With Errors (PLWE)
 - Ring Learning With Errors (RLWE)
- Sparse Subset Sum Problem (SSSP)
- Bounded Distance Decoding (BDD)
- Approximate Greatest Common Divisor (AGCD)
- Polynomial Coset Problem (PCP): related to Ideal Coset Problem

- Different clients encrypt data under different FHE keys.
- The cloud combines data encrypted under different keys: $Enc_{pk_1,...,pk_t}(f(m_1,...,m_t)) \leftarrow Eval(pk_1,...,pk_t,f,c_1,...,c_t)$
- FHE does not provide it automatically.
- It is possible to construct FHE schemes with above property: [LATV12] "On-the-fly Multiparty Computation on the Cloud via Multi-key FHE."

A Construction of FHE [DGHV'10]

- Construct a Symmetric Somewhat Homomorphic Encryption (under the approximate GCD assumption)
- By a simple transformation, convert it to a Public-key Somewhat Homomorphic Encryption (under the approximate GCD assumption)
- Use Gentry's techniques to have a public-key FHE (under approximate GCD + sparse subset sum)

Approximate GCD Problem

- Given many $x_i = s_i + q_i p$, output p
- Example parameters: $s_i \sim 2^{\lambda}$, $p \sim 2^{\lambda^2}$, $q_i \sim 2^{\lambda^5}$ (λ : security parameter)
- Best known attacks (lattice-based): $\sim 2^{\lambda}$ time

A Construction of FHE [DGHV'10]

Step 1: Constructing a symmetric homomorphic encryption scheme

Secret key

large odd number p

Encryption steps of a bit m

Choose at random large q and small r c = pq + 2r + mIf $2r + m \ll p$ then ciphertext is close to a multiple of p Parameters: |r| = n, $|p| = n^2$ and $|q| = n^5$

Decryption

 $m \equiv (c \mod p) \mod 2$

Why is it homomorphic?

 $\begin{aligned} c_1 &= pq_1 + 2r_1 + m_1, & c_2 &= pq_2 + 2r_2 + m_2 \\ \bullet & c_1 + c_2 &= (q_1 + q_2)p + 2(r_1 + r_2) + (m_1 + m_2) \\ & \text{If } (r_1 + r_2) \ll \frac{p}{2} \Rightarrow (c_1 + c_2 \mod p) \mod 2 \equiv m_1 + m_2(\text{mod}2) \\ & \text{Noise} &= 2 \times (\text{Initial noise}) \\ \bullet & c_1c_2 &= (q_1q_2p + 2q_1r_2 + q_1m_2 + 2q_2r_1 + q_2m_1)p + 2(2r_1r_2 + r_1m_2 + m_1r_2) + m_1m_2 \\ & \text{If } (2r_1r_2 + r_1m_2 + m_1r_2) \ll \frac{p}{2} \Rightarrow (c_1c_2 \mod p) \mod 2 \equiv m_1m_2(\text{mod}2) \\ & \text{Noise} &= (\text{Initial noise})^2 \end{aligned}$

Comparison of Fully Homomorphic Encryption Schemes

Scheme	Year	Underlying	Asymptotic Runtime	Concrete Runtime
		Problems		
Gentry: A Fully Homomorphic	2009	BDDP +	$O(\lambda^{3.5})$ per gate for ciphertext	NA
Encryption Scheme		SSSP	refreshing	
van Dijk, Gentry, Halevi,	2010	AGCD +	Public key size: $O(\lambda^{10})$, no gate	NA
Vaikuntanathan: FHE over the		SSSP	cost given	
Integers				
Smart, Vercauteren: FHE with	2010	PCP +	Key generation: $O(\log n.n^{2.5})$	Key generation: several
Relatively Small Key and Cipher-		SSSP		hours even for small pa-
text Sizes				rameters, for larger pa-
				rameters the keys could
				not be generated
Brakerski, Vaikuntanathan: Effi-	2011	DLWE	Evaluation key size:	-
cient FHE from (standard) LWE			$O(\lambda^{2C} \log(\lambda))$	
Brakerski, Vaikuntanathan:	2011	PLWE	Very cheap key generation, un-	-
FHE from Ring-LWE and			known for bootstrapping	
Security for Key Dependent				
Messages				
Brakerski, Gentry, Vaikun-	2011	RLWE	Per-gate computation overhead	36 hours for an AES en-
tanathan: FHE without			$O(d^3\lambda \log \lambda)$ without boot-	cryption on a supercom-
Bootstrapping			strapping, $O(\lambda^2 \log \lambda)$ with	puter
			bootstrapping	

d: Depth of the circuit, n: Dimension of the lattice, C: A very large parameter for ensuring bootstrappability

Comparison of Fully Homomorphic Encryption Schemes Continued

1			
2011	SVP +	Key generation: $O(\log n.n^{1.5})$	Bootstrapping: From 30s
	BDD		(for small setting) to 30
			min (for large setting)
2012	DAGCD +	Public key size: $O(\lambda^5 \log(\lambda))$,	Recryption: 11 min
	SSSP	no gate cost given	
2014	SVP +	-	Recryption: 275s on 20
	RLWE		cores with 64-bit security
2015	RLWE	-	Vectors of 1024 elements
			from $GF(2^{16})$ was re-
			crypted in 5.5 min at se-
			curity level \approx 76, single
			CPU core
	2012	2012 DAGCD + SSSP + 2014 SVP + RLWE +	BDD Public key size: $O(\lambda^5 \log(\lambda))$, no gate cost given 2012 DAGCD + SSSP 2014 SVP + RLWE

Table From: Armknecht et al. [ABCGJRS'15]

э

- FHE schemes typically come with a ciphertext expansion in the order of 1000 to 1000000.
- Compression method: instead of sending $c = HE_{pk}(m)$ to the cloud, pick a random key k and send $c' = (HE_{pk}(k), E_k(m))$.
- For long messages, $|c'|/|m| \approx 1$.
- By homomorphically evaluating the decryption circuit C_{E⁻¹}, the cloud recovers c = HE_{pk}(m) = C_{E⁻¹}(HE_{pk}(k); E_k(m)).
- Symmetric encryption algorithms for FHE, MPC, etc:
 - LowMC (block cipher): eprint 2016/687
 - Kreyvium (stream cipher): eprint 2015/113
 - FLIP (stream cipher): eprint 2016/254

A public key FE scheme for a class of circuits C_{λ} is a tuple of PPT algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) [O'N10, BSW12]):

- (msk, pk) ← FE.Setup(1^λ): FE.Setup takes as input the security parameter λ and outputs the master secret key msk and public key pk.
- sk_C ← FE.KeyGen(msk, C): FE.KeyGen takes as input the master secret key and a circuit C ∈ C_λ and outputs the functional secret key sk_C.
- c ← FE.Enc(pk, m): FE.Enc takes as input the public key and message m ∈ {0,1}* and outputs the ciphertext c.
- y ← FE.Dec(sk_C, c): FE.Dec takes as input the functional secret key and ciphertext and outputs y ∈ {0,1}*.

- FHE: compute Enc(f(x)) from Enc(x) for any function f.
- FE: compute f(x) from Enc(x).
- For functions of the type Enc_f, where Enc_f(x) = Enc(f(x)) is a re-encryption of f(x), FE would be very close to constructing an FHE scheme.
- Randomized FE can be used for constructing FHE [ABFGGTW'13].
- Randomized FE (FE with randomized functionality): privacy-aware auditing, differentially private data release, proxy re-encryption, ...
- rFE is not much more difficult to construct than the standard FE.

- Program obfuscation: to scramble a computer program, hiding its implementation details (making it hard to reverse-engineer), while preserving the functionality (i.e, input-output behaviour) of the program.
- Obfuscation:
 - The cloud is given an "encrypted" program E(P).
 - For any input x, cloud can compute E(P)(x) = P(x).
 - Cloud learns nothing about P, except $\{x_i, P(x_i)\}$.

- Notion of indistinguishability obfuscation (iO) has emerged as the central notion of obfuscation.
- iO requires that obfuscations iO(C₁), iO(C₂) of any two functionally equivalent circuits C₁ and C₂ (i.e., whose outputs agree on all inputs) from some class of bounded-size circuits C are computationally indistinguishable.
- All candidate constructions of iO rely on candidate constructions of multilinear maps, all of which have non-trivial attacks.

Formal definition

A uniform PPT machine is called an iO for a circuit class $\{\mathcal{C}_{\lambda}\}$ if

- Correctness: For all security parameters λ ∈ N, for all C ∈ C_λ and all inputs x, we have Pr[C'(x) = C(x) | C' ← iO(λ, C)] = 1
- Security: For any PPT distinguisher D, there exists a negligible function ε such that for all security parameters λ ∈ N, for all pairs of circuits C₀, C₁ ∈ C_λ, we have if C₀(x) = C₁(x) for all inputs x then
 | Pr[D(iO(λ, C₀)) = 1] Pr[D(iO(λ, C₁)) = 1] |≤ ε(λ)

- FHE does not provide obfuscation automatically.
- It is possible to use obfuscated circuits to obtain Randomized Functional Encryption schemes suitable for FHE constructions [ABFGGTW'13]:

Obfuscated circuits \rightarrow Randomized Functional Encryption \rightarrow FHE

- It is important that the obfuscator is efficient (polynomial-time).
- A trivial inefficient iO with running time poly(|C|, λ).2ⁿ exists unconditionally: Simply output the function table of C (i.e. the output of C on all possible inputs).
 - C: the circuit to be obfuscated
 - λ : security parameter
 - n: input length of C
- In "standard" (efficient) iO, the running time and size of the obfuscator is required to be *poly*(|C|, λ) (polylogarithmic in the size of the truth table of C).

• XiO: Exponentially-Efficient iO

Lin et al., Indistinguishability Obfuscation with Non-trivial efficiency, (PKC'16), eprint 2016/006

• Inefficient iO with running time $poly(|C|, \lambda).2^n$ exists unconditionally.

- In XiO, running-time of the obfuscator may still be trivial (*poly*(|C|, λ).2ⁿ), but the obfuscated code is just slightly smaller than the truth table of C (*poly*(|C|, λ).2^{n(1-ε)} where ε > 0).
- *Succinct FE*: A compact FE for a class of circuits that output only a single bit.
- There is NOT any black-box deduction from succinct FE to iO
- There is black-box deduction from succinct FE to XiO

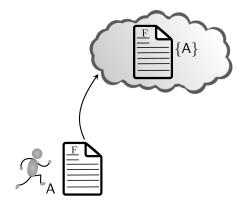
- Multiparty Computation (MPC)
- Delegation of Computation
- Searchable Encryption
- Attribute-based Encryption

• ...

э

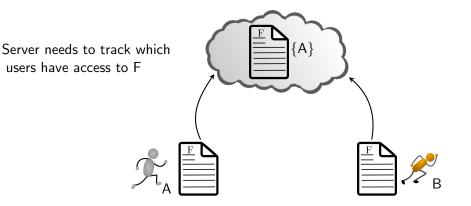
Secure Deduplication

Cloud Storage

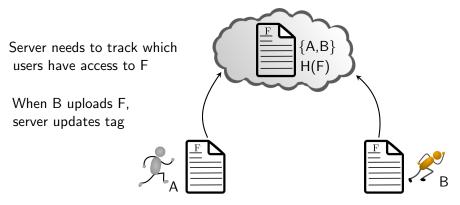


30 / 58

2

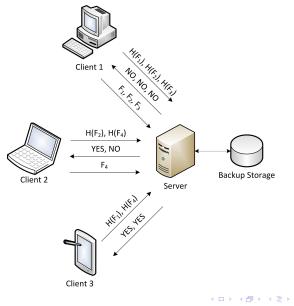


{A,B} Server needs to track which users have access to F When B uploads F, server updates tag



Smarter: client-side deduplication where users send H(F) [Inside Dropbox, Drago et al., IMC'12]

Simple client-side deduplication



Mohsen Toorani

Finse Winter School 2017

31 / 58

Deduplication

- **Deduplication**: store only a single copy of each file (or block)
- Can save more than 90% of storage in many business scenarios (major savings in media files and software)
- Server-side deduplication: Data is always uploaded, but only one copy is stored on the cloud.
 - + saves storage
- Client-side deduplication: Data is uploaded if it is not available on the cloud.
 - + saves storage
 - $+ \ \, {\rm saves} \ \, {\rm bandwidth}$
- Encryption is at odds with cross-user deduplication: solutions exist to derive key from file itself [MLE, MLE2, iMLE, Dupless, PAKE-based, ...]
- Serious privacy concerns may arise when deduplication is used by popular storage services (side-channels).

イロト 不得下 イヨト イヨト

- P_f: File plaintext
 - E: Symmetric key encryption
 - F: Public key encryption

 (K_u, K'_u) : Public/private key pair for each user u

•
$$C_f = X_{K_u}(P_f) = \langle c_f, M_f \rangle$$
 in which

•
$$c_f = E_{H(P_f)}(P_f)$$

• $M_f = \{\mu_u = F_{K_u}(H(P_f)) \land u \in U_f\}$

•
$$P_f = X_{K'_u}^{-1}(C_f) = E_{F_{K'_u}^{-1}(\mu_u)}^{-1}(c_f)$$

MLE

Bellare et al. (EUROCRYPT'13)

- Alice:
 - $k_A \leftarrow K(P, m_A)$
 - $c_A \leftarrow E(k_A, m_A)$
 - $t_A \leftarrow T(P, c_A)$
 - upload *c*_A to the server

• Bob:

- $k_B \leftarrow K(P, m_B)$
- $c_B \leftarrow E(k_B, m_B)$
- $t_B \leftarrow T(P, c_B)$
- upload c_B to the server
- Tag correctness: if $t_A = t_B$ then $m_A = m_B$ and the server deduplicates.
- Duplicate faking attack: if $t_A = t_B$ but $m_A \neq m_B$ (integrity violation).
- CE is a special case of the MLE where k = H(m) and T = H(c).

Can we get IND-CPA style privacy for MLE?

Message recovery security

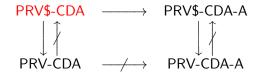
Consider a set $S = \{m_1, ..., m_n\}$ Given $c \leftarrow E(K(m_i), m_i)$ where $i \leftarrow \{1, 2, ..., n\}$ Find m_i

$BruteForce_{S}(c)$

For $m_i \in S$: $m' \leftarrow D(K(m_i), c)$ If $m_i = m'$ then return m_i

Privacy is not possible for predictable messages.

MLE schemes cannot achieve semantic-security-style privacy.



CDA: Chosen-Distribution Attack

PRV-CDA: Encryptions of two unpredictable messages should be indistinguishable (for non-adaptive adversaries).

PRV\$-CDA: Encryption of an unpredictable message must be indistinguishable from a random string of the same length (for non-adaptive adversaries).

Tag Consistency (TC): hard to create (M, C) s.t.: T(C) = T(E(K(M), M)) but $D(K(M), C) = M' \neq M$ Strong Tag Consistency (STC): hard to create (M, C) s.t.: T(C) = T(E(K(M), M)) but $D(K(M), C) = \bot$ TC & STC: Preserve integrity

Scheme	Model	D/R	Pri	Integrity		
Seneme			PRV-CDA	PRV\$-CDA	ТC	STC
CE	RO	D	✓	✓	✓	✓
HCE1	RO	D	1	1	X	X
HCE2	RO	D	1	1	✓	X
RCE	RO	R	1	✓	✓	X

• CE: K = H(M), C = E(K, M), T = H(C)

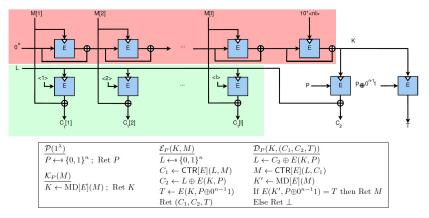
• HCE1: K = H(M), C = E(K, M) || H(K), T = H(K)

• HCE1 does not provide TC (vulnerable to duplicate faking attack).

Scheme	Key generation	Encrypt	Tag generation	Decrypt	
Scheme	$\mathcal{K}_P(M)$	$\mathcal{E}_P(K, M)$	$T_P(C)$	$\mathcal{D}_P(K, C)$	
CE[SE, H] Convergent Encryption	$K \leftarrow \mathcal{H}(P, M)$ Ret K	$\begin{array}{c} C \leftarrow \mathcal{SE}(K,M) \\ \text{Ret } C \end{array}$	Ret $\mathcal{H}(P,C)$	Ret $\mathcal{SD}(K,C)$	
HCE1[SE, H] Hash and CE w/o tag check		$T \leftarrow \mathcal{H}(P, K)$ $C \leftarrow \mathcal{SE}(K, M)$ Ret $C \parallel T$		Parse C as $C_1 \parallel T$ $M \leftarrow \mathcal{SD}(K, C)$ Ret M	
HCE2[SE, H] Hash and CE w/ tag check			Parse C as $C_1 \parallel T$ Ret T	$\begin{array}{l} \text{Parse } C \text{ as } C_1 \parallel T \\ M \leftarrow \mathcal{SD}(K,C) \\ T' \leftarrow \mathcal{H}(P,\mathcal{H}(P,M)) \\ \text{If } T' \neq T \text{ then } \bot \\ \text{Ret } M \end{array}$	
RCE[SE, H] Randomized Convergent Encryption		$ \begin{array}{c} L \leftrightarrow \{0, 1\}^{r(6)} \\ T \leftarrow \mathcal{H}(P, K) \\ C_1 \leftarrow \mathcal{SE}(L, M) \\ C_2 \leftarrow L \oplus K \\ \text{Bot } C_{-} \ C_0 \ T \end{array} \right) \begin{array}{c} L \leftrightarrow C_1 \ C_2 \ T \\ \text{Ret } T \\ \text{Hor } T \end{array} $		$\begin{array}{l} \text{Parse } C \text{ as } C_1, C_2, T \\ L \leftarrow C_2 \oplus K \\ M \leftarrow \mathcal{SD}(L, C_1) \\ T' \leftarrow \mathcal{H}(P, \mathcal{H}(P, M)) \\ \text{If } T' \neq T \text{ then } \text{Ret } \bot \\ \text{Ret } M \end{array}$	

MLE schemes built using symmetric encryption scheme SE = (SK; SE; SD) and hash function family H = (HK; H).

MLE RCE



- CE[E]: Set L = 0ⁿ, use C₂ as the key for CTR[E], exclude C₂ from the ciphertext, tag generation hashes the ciphertext: E(MD[E](M); P).
- HCE2[E]: Use C₂ as the encryption key for CTR[E]. Exclude C₂ from the ciphertext.

Scheme	Model	$\mathrm{D/R}$		vacy PRV\$-CDA		grity	CI-H
CE	RO	D	✓	✓	1	1	
HCE1	RO	D	1	1	×	×	D-MLE D DKE R-MLE
HCE2	RO	D	1	1	1	X	(PRV\$-CDA) $D-PKE$ $(PRV$-CDA)$
RCE	RO	R	1	1	1	×	
XtCIH	STD	D	1	~	1	1	D-MLE DO DUD R-MLE
XtDPKE	STD	D	1	×	1	1	$(PRV-CDA)$ ES-PKE \rightarrow $(PRV-CDA)$
XtESPKE	STD	R	1	×	1	1	
SXE	STD	D	1	1	1	1	

D-PKE: Deterministic Public-Key Encryption Cl-H: Correlated-input-secure Hash Function

- Strengthened the notions of security by considering plaintext distributions that may depend on the public parameters of the schemes (lock-dependent messages).
- First (main) construction (A fully randomized scheme): R-MLE2
 - tag $\tau = (g^r, g^{rh(m)})$
 - Suppose $\tau_1 = (g_1, h_1) = (g^{r_1}, g^{r_1h(m_1)})$ and $\tau_2 = (g_2, h_2) = (g^{r_2}, g^{r_2h(m_2)})$
 - Equality testing: $e(g_1, h_2) \stackrel{?}{=} e(g_2, h_1)$
 - If $e(g^{r_1}, g^{r_2h(m_2)}) = e(g^{r_2}, g^{r_1h(m_1)})$ then $h(m_1) = h(m_2)$.
- Second construction has a deterministic ciphertext component for more efficient equality testing.

- iMLE: Interactive message-locked encryption
- Using interaction, it provides security for messages that are both correlated and dependent on the public system parameters.
- They first construct a seemingly weak primitive: MLE-Without-Comparison (MLEWC)
- To enable comparison between ciphertexts, they introduce FCHECK which employs an interactive protocol based on a FHE scheme which transforms the MLEWC into iMLE.
- FCHECK is a theoretical construction.

Scheme(s)	Type	Mes	STD/ROM	
		Correlated	Param. dep.	512/10011
CE, HCE1, HCE2, RCE [12]		Yes	No	ROM
XtDPKE, XtESPKE, [12]	MLE	Yes	No	STD
BHK [10]	MLE	Yes	No	STD
ABMRS [1]	MLE	No	Yes	RO
FCHECK	iMLE	Yes	Yes	STD

- DupLESS (USENIX Security 2013): Introduces a third-party key server and uses MLE. Each client engages with the key server in an oblivious pseudo-random protocol (OSRP) to obtain a message-derived key.
- Stanek et al. (FC'14): Notion of popularity + threshold cryptosystem
- PerfectDedup (DPM'15): Considers notion of popularity for block-level deduplication. Uses convergent encryption and perfect hashing.
- μR-MLE2 (ACISP'16): reduces the overhead of R-MLE2 by using static and dynamic decision trees.

• ...

- Proof-of-ownership (PoW): enables a client to prove the possession of a file (rather than just some short information about it).
- Proof-of-Retrievability (PoR): Interactive protocols that cryptographically prove the retrievability of outsourced data.

Side channels in deduplication

joint work with Frederik Armknecht, Colin Boyd, Gareth T. Davies, and Kristian Gjøsteen

eprint 2016/977

Classical client-side deduplication: server only asks client to send file if not already stored by the server

Classical client-side deduplication: server only asks client to send file if not already stored by the server

 \Rightarrow side channel ("existence-of-file attack")

Adversarial client can learn if (low-entropy) files are stored or not

Classical client-side deduplication: server only asks client to send file if not already stored by the server

 \Rightarrow side channel ("existence-of-file attack")

Adversarial client can learn if (low-entropy) files are stored or not

Identifying files, learning file contents, covert channels, ...

Examples: Clinical lab test results, figures in tax returns, pay stubs and

contracts, bank letters including password or PIN, ...

[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE Security and Privacy Magazine, 2010]

[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that it has enough copies.

[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that it has enough copies.

If thr is chosen uniformly from the range $\{1,\ldots,B\}$ for some integer B then an adversary launching the existence-of-file attack will learn nothing if thr $\in \{2,\ldots,B-1\}.$

[Harnik et al., Side Channels in Cloud Services: Deduplication in Cloud Storage, IEEE Security and Privacy Magazine, 2010]

Denote as thr the number of uploads before the server informs clients that it has enough copies.

If the is chosen uniformly from the range $\{1, \ldots, B\}$ for some integer B then an adversary launching the existence-of-file attack will learn nothing if the $\{2, \ldots, B-1\}$.

The expected number of uploads of a file is $\frac{B+1}{2}$.

Deduplication Strategies

A deduplication strategy DS is characterized by its probability distribution $DS(F, \lambda) = (p_1(F, \lambda), p_2(F, \lambda), ...)$ where

$$p_i(F,\lambda) = \Pr[i \leftarrow \mathsf{DS}.\mathsf{Alg}(F,\lambda)]$$

A threshold selection algorithm DS.Alg is a probabilistic procedure that outputs a threshold thr $\in \mathbb{N}$:

 $\mathsf{thr} \leftarrow \mathsf{DS}.\mathsf{Alg}(\mathsf{F},\lambda)$

Deduplication Strategies

A deduplication strategy DS is characterized by its probability distribution $DS(F, \lambda) = (p_1(F, \lambda), p_2(F, \lambda), ...)$ where

$$p_i(F,\lambda) = \Pr[i \leftarrow \mathsf{DS}.\mathsf{Alg}(F,\lambda)]$$

A threshold selection algorithm DS.Alg is a probabilistic procedure that outputs a threshold thr $\in \mathbb{N}$:

$$\mathsf{thr} \leftarrow \mathsf{DS}.\mathsf{Alg}(\mathsf{F},\lambda)$$

DS is file-oblivious if the distributions are independent of the file:

 $\mathsf{DS.Alg}(F,\lambda) = \mathsf{DS.Alg}(F^*,\lambda), \quad \forall \lambda \in \mathbb{N}, \ \forall F, F^* \in \{0,1\}^*$

Deduplication Strategies

A deduplication strategy DS is characterized by its probability distribution $DS(F, \lambda) = (p_1(F, \lambda), p_2(F, \lambda), ...)$ where

$$p_i(F,\lambda) = \Pr[i \leftarrow \mathsf{DS}.\mathsf{Alg}(F,\lambda)]$$

A threshold selection algorithm DS.Alg is a probabilistic procedure that outputs a threshold thr $\in \mathbb{N}$:

$$\mathsf{thr} \leftarrow \mathsf{DS}.\mathsf{Alg}(\mathsf{F},\lambda)$$

DS is file-oblivious if the distributions are independent of the file:

 $\mathsf{DS.Alg}(F,\lambda) = \mathsf{DS.Alg}(F^*,\lambda), \quad \forall \lambda \in \mathbb{N}, \ \forall F, F^* \in \{0,1\}^*$

DS is finite if for $\forall \lambda$ and $\forall F$, there exists an upper bound $B = B(F, \lambda)$ such that $p_j(F, \lambda) = 0$ for $\forall j > B(F, \lambda)$.

イロト イポト イヨト イヨト 二日

3

 \Rightarrow server asks for file thr times before saying it already has it

 \Rightarrow server asks for file thr times before saying it already has it

Examples:

 \bullet A server that does not defend against the existence-of-file attack: $\mathsf{DS}^{\mathsf{dnd}} = (1,0,\dots)$

 \Rightarrow server asks for file thr times before saying it already has it

Examples:

- \bullet A server that does not defend against the existence-of-file attack: $\mathsf{DS}^{\mathsf{dnd}} = (1,0,\dots)$
- Threshold chosen uniformly at random: $DS^U = (\frac{1}{B}, \frac{1}{B}, \dots, \frac{1}{B}, 0, \dots)$

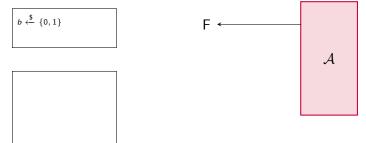
For each strategy, we can define two properties:

- Expected dedup threshold $E = \sum_{i=1}^{\infty} i.p_i$
- Statistical distance $\Delta = rac{1}{2} \sum_{i=0}^{\infty} |p_i p_{i+1}|$

E is measure of bandwidth overhead (efficiency). Δ is a relative measure of security of the strategy.

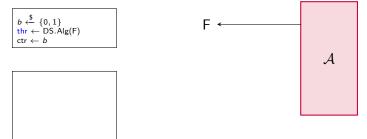
Formalize the IND-EFA game between challenger and an adversary:

Formalize the IND-EFA game between challenger and an adversary:



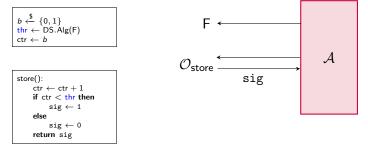
• A chooses a file F from the filespace. A attempts to distinguish the two distributions DS and DS*, where DS* is the deduplication strategy probability function shifted one position to the left.

Formalize the IND-EFA game between challenger and an adversary:



- A chooses a file F from the filespace. A attempts to distinguish the two distributions DS and DS*, where DS* is the deduplication strategy probability function shifted one position to the left.
- The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case increments the counter by one to simulate initial storage of F.

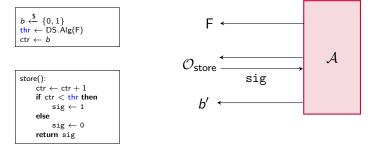
Formalize the IND-EFA game between challenger and an adversary:



- A chooses a file F from the filespace. A attempts to distinguish the two distributions DS and DS*, where DS* is the deduplication strategy probability function shifted one position to the left.
- The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case increments the counter by one to simulate initial storage of F.
- A has access to a store() oracle which increments the storage counter and responds with the appropriate signal sig.

51 / 58

Formalize the IND-EFA game between challenger and an adversary:



- A chooses a file F from the filespace. A attempts to distinguish the two distributions DS and DS*, where DS* is the deduplication strategy probability function shifted one position to the left.
- The challenger invokes strategy algorithm DS.Alg on F and in the b = 1 case increments the counter by one to simulate initial storage of F.
- A has access to a store() oracle which increments the storage counter and responds with the appropriate signal sig.

B ▶ < B ▶

A D b 4 A b

General IND-EFA experiment for deduplication schemes:

$$\begin{array}{c|c} \mathbf{Exp}_{\text{DS.Alg, }\mathcal{A}}^{\text{IND-EFA}}(\lambda): & \text{store():} \\ \hline b \xleftarrow{\$} \{0,1\} & \text{ctr} \leftarrow \text{ctr} + 1 \\ F \leftarrow \mathcal{A} & \text{if ctr} < \text{thr then} \\ \text{thr} \leftarrow \text{DS.Alg}(F,\lambda) & \text{else} \\ ctr \leftarrow b & \text{sig} \leftarrow 1 \\ b' \leftarrow \mathcal{A}^{\text{store}}(\lambda) & \text{return sig} \end{array}$$

$$\mathbf{Adv}_{\mathsf{DS},\ \mathcal{A}}^{\mathsf{IND}\mathsf{-}\mathsf{EFA}}(\lambda) \stackrel{def}{=} \left| 2 \cdot \mathbf{Pr} \left[\mathbf{Exp}_{\mathsf{DS},\ \mathcal{A}}^{\mathsf{IND}\mathsf{-}\mathsf{EFA}}(\lambda) = 1 \right] - 1 \right|$$

Scheme is IND-EFA Secure if \mathcal{A} 's advantage is no better than guessing.

For the uniform strategy mentioned earlier $\mathsf{DS}^{\mathsf{U}}=(\frac{1}{B},\frac{1}{B},\ldots,\frac{1}{B},0,\ldots)$

For the uniform strategy mentioned earlier $DS^{U} = \left(\frac{1}{B}, \frac{1}{B}, \dots, \frac{1}{B}, 0, \dots\right)$ $E^{U} = 2 \cdot \frac{1}{B} + \dots + B \cdot \frac{1}{B} = \frac{B+1}{2}$

For the uniform strategy mentioned earlier
$$\begin{split} \mathsf{DS}^{\mathsf{U}} &= \big(\frac{1}{\mathsf{B}}, \frac{1}{\mathsf{B}}, \dots, \frac{1}{\mathsf{B}}, 0, \dots \big) \\ \mathsf{E}^{\mathsf{U}} &= 2 \cdot \frac{1}{\mathsf{B}} + \dots + \mathsf{B} \cdot \frac{1}{\mathsf{B}} = \frac{\mathsf{B} + 1}{2} \\ \mathsf{\Delta}^{\mathsf{U}} &= \frac{1}{\mathsf{B}} \end{split}$$

3

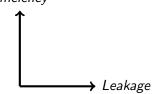
For the uniform strategy mentioned earlier

$$DS^{U} = \left(\frac{1}{B}, \frac{1}{B}, \dots, \frac{1}{B}, 0, \dots\right)$$

$$E^{U} = 2 \cdot \frac{1}{B} + \dots + B \cdot \frac{1}{B} = \frac{B+1}{2}$$

$$\Delta^{U} = \frac{1}{B}$$

Tradeoff: bandwidth overhead \longleftrightarrow security level Efficiency



53 / 58

For the uniform strategy mentioned earlier

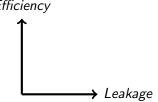
$$DS^{U} = \left(\frac{1}{B}, \frac{1}{B}, \dots, \frac{1}{B}, 0, \dots\right)$$

$$E^{U} = 2 \cdot \frac{1}{B} + \dots + B \cdot \frac{1}{B} = \frac{B+1}{2}$$

$$\Delta^{U} = \frac{1}{B}$$

Tradeoff: bandwidth overhead \longleftrightarrow security level Efficiency

Natural metric: $E \cdot \Delta$



For any deduplication strategy DS with expected threshold E and security level Δ ,

$$E^{\mathsf{U}} \cdot \Delta^{\mathsf{U}} \leq E \cdot \Delta.$$

where E^{U} and Δ^{U} are the expected threshold and security level of the uniformly random strategy, respectively.

Theorem 1

Let $DS = (p_1, p_2, ..., p_B, 0, ...)$ be any deduplication strategy, and let Δ and E be the corresponding values. Let π be a permutation on $\{1, 2, ..., B\}$ such that $DS' = (p_{\pi(1)}, p_{\pi(2)}, ..., p_{\pi(B)}, 0, ...)$ is a non-increasing deduplication strategy with corresponding values Δ' and E'. Then $\Delta' \leq \Delta$ and $E' \leq E$.

For any DS, making it non-increasing does not increase $E \cdot \Delta$

Theorem 2

Let $DS' = (p'_1, p'_2, \dots, p'_B, 0, \dots)$ be a non-increasing deduplication strategy, and let Δ' and E' be its corresponding values. Then $1 + \frac{1}{B} \leq E' \cdot \Delta'$.

Given non-increasing strategy, making it 'more uniform' does not increase $E \cdot \Delta$

- Is this a realistic tradeoff: perhaps $E^s \cdot \Delta$ or other metrics?
- Can we extend this formalism to other attack vectors?
- Extension to other related fields, e.g. cache privacy?

Thank you! Questions?

æ