

Biometric Recognition

Marta Gomez-Barrero

Hochschule Darmstadt, CRISP, da/sec Security Group Finse Winter School, May 2017

Vulnerabilities of Biometric Systems

Biometrics & Privacy

Marta Gomez-Barrero

Why biometric recognition?

- We need to identify ourselves in a daily basis
- Impossible to remember 100 different passwords

Losing or forgetting our password / token is easy

Why not use our body features or behavioural patterns?

Biometric characteristics

- Classification:
 - Physiological
 - Behavioural

Properties:

- Universality: everybody should possess it
- Distinctiveness: should have enough intervariability
- Permanence: should not vary through time
- **Collectability**: should be easy to acquire
- **Performance**: should have good error rates
- Acceptability: user should not be reluctant to use it
- Circumvention: difficult to bypass

Advantages and disadvantages of biometrics

- No need to remember passwords or carry tokens
- Impersonation can be detected
- A single characteristic can be used in multiple applications, without security decrease
- Spoofing / Presentation Attacks (PA)
- Renewability
- Biometrics are no secrets
- Sensitive information

How does it work?

Example: iris recognition

Verification vs Identification

Verification: I am Jon Doe (1:1)

Identification: I am in the list (1:n)

Error rates

[ISO/IEC 2382-37 Harmonized Biometrics Vocabulary (HBV)]

Two kinds of comparisons:

Two kinds of error rates:

- False Match Rate (FMR) proportion of falsely accepted non-mated comparison trials
- False Non-Match Rate (FNMR) proportion of falsely rejected mated comparison trials

Evaluating the accuracy

[ISO/IEC 19795 on Biometric performance testing and reporting]

- Plot mated and non-mated score distributions
- \succ Establish a verification threshold: δ

$\succ \delta$ determines the FMR

… and the FNMR

Comparing systems

- Compare all operating points with a Detection
 Error Trade-off (DET) curve
- The point at which FMR = FNMR is defined as Equal Error Rate (EER) - the lower, the better
- Report FNMR at fixed FMR – e.g., FMR = 0.1%

Multi-Biometric systems

[ISO/IEC TR 24722 on Multimodal and other multibiometric fusion]

> Advantages

- Higher accuracy
- Increased robustness to individual sensor or subsystem failures
- Decreased number of cases where the system is not able to make a decision
- Different levels of security
- 0 ...
- Fusion levels:
 Feature level
 Score level
 Decision level

Can be harder to achieve, but it's preferred: reduced storage and higher security

Vulnerabilities of Biometric Systems

Marta Gomez-Barrero

External Attacks

Biometric systems are not free from external attacks.

Vulnerability Analysis TABULA Projects

Liveness Detection Competition Series

BEAT

HC based on the Uphill Simplex algorithm

- New point: • Compute centroid: $\bar{\mathbf{y}} = \frac{1}{K+1} \sum_{i} \mathbf{y}_{i}$ • Try reflection: $\mathbf{a} = (1+\alpha)\bar{\mathbf{y}} - \alpha \mathbf{y}_{l}$
 - \circ Try expansion $\mathbf{b} = \gamma \mathbf{a} + (1 \gamma) ar{\mathbf{y}}$
 - or contraction: $\mathbf{b} = \beta \mathbf{y}_l + (1 \beta) \bar{\mathbf{y}}$

- Stopping criteria:
 - One of the points of the simplex is close enough => success
 - Maximum number of iterations allowed reached => failure

Marta Gomez-Barrero

Example 2: Face and signature Success Rates (SR)

We can evaluate how dangerous the attack is in terms of the success rate:

$$SR = \frac{A_B}{A_T}$$

> At different operation points in terms of FMR

FMR (%)	Face System	Signature System	
0.05%	100%	92.69%	
0.01%	100%	87.84%	

Hill Climbing attacks represent a real challenge to the security offered by biometric systems => Quantized Scores

HC based on genetic algorithms (I)

- We start with a random population of binary individuals
- At each iteration, we generate a new population according to four rules:
 - Elite: two individuals
 - Selection: stochastic universal sampling
 - Crossover: scattered crossover
 - **Mutation**: random changes
- Our fitness function is the similarity score
- Stopping criteria:
 - One of the individuals exceeds the verification threshold => success
 - Score increase in the last generations is very small => failure
 - Maximum number of iterations allowed reached => failure

HC based on genetic algorithms (II)

Marta Gomez-Barrero

Example: Iris

FMR (%)	Iris System	
0.05%	80.89%	
0.01%	62.36%	

Hill Climbing attacks represent a real challenge to the security offered by biometric systems => Quantized Scores

HC Attacks on multi-biometric systems

Contrary to the belief that it is more difficult to attack a multi-biometric systems, we can combine these algorithms and succeed in our attack

Marta Gomez-Barrero

Biometrics: sensitive data

- Wide deployment of biometrics:
 - Large scale national and international projects
 - Banking apps, ATMs
 - Smartphone unlocking

AADHAAR

European Commission

PASSP

Biometrics are classified as sensitive data

[EU 2016/679 Data Protection Regulation] [EU 2016/680 Data Protection Directive]

And we cannot prevent databases leakage

Inverse biometrics attacks

It was a common belief that the stored templates revealed no information about the biometric characteristics:

However, biometric samples can be recovered from the stored unprotected templates

Inverse biometrics attacks: Hill-Climbing

Based on the HC algorithms presented before, we can reconstruct biometric samples: face l _{iris} hand [M. Gomez-Barrero et al., Int. Conf. on *Biometrics*, 2012] [M. Gomez-Barrero et al., Information Sciences, 2014] [J. Galbally, et al., Computer Vision & Image Understanding, 2013]

Marta Gomez-Barrero

Inverse biometrics attacks: Success Rates

FMR (%)	Iris	Fingerprint (indirect)	Fingerprint (PA)
0.05%	85.1%	98%	78%
0.01%	83.6%	92%	68%

Over 85% of the attacks are successful => Real challenge!

Lower success chances, but more difficult to detect

Templates need to be protected, so that we cannot recover the biometric sample

In addition, Presentation Attacks need to be detected

Cross-matching attacks

> We can enroll with a single characteristic in different applications

Summary

- Do the stored templates reveal any information about the original biometric samples?
- Are my enrolled templates in different recognition systems somehow related to each other?
- What if someone steals a template extracted from my face? Has it been permanently compromised?

[ISO/IEC IS 24745 on Biometric Information Protection]

Marta Gomez-Barrero

Marta Gomez-Barrero

(marta.gomez-barrero@h-da.de)

From inverse biometrics attack to PA

(1)

(h)

(e)

Finse Winter School '17 – Biometric Recognition, 9/5/17

(g)

Biometric Template Protection

Marta Gomez-Barrero

Hochschule Darmstadt, CRISP, da/sec Security Group Finse Winter School, May 2017

- Security and Privacy Evaluation
- Cancelable Biometrics Based on Bloom Filters
- BTP Based on Homomorphic Encryption

> Summary

Marta Gomez-Barrero

Protecting the subject's privacy

[ISO/IEC IS 24745 on Biometric Information Protection]

Requirements of Biometric Template Protection:

Biometric Template Protection Architecture

BTP Approaches

Cancelable Biometrics

- Accuracy drops
- Permanent irreversibility
- Unlinkability not analysed
- Computational Complexity Preserved

Template Protection based on Bloom filters

Cryptobiometrics

- Accuracy drops
- Attacks on AD (irreversibility compromised)
- Unlinkability not analysed
- Computational Complexity Preserved

Biometrics in the Encrypted Domain

- Accuracy preserved
- Permanent irreversibility
- Unlinkability granted
- Computational Complexity increased

[Campisi, Springer 2013]

Template Protection based on Homomorphic Encryption

Multi-Biometrics and BTP

Multi-Biometrics:

- Higher accuracy
- Different levels of security
- Three fusion levels: feature, score, decision [ISO/IEC TR 24722]

Multi-Biometric Template Protection [Rathgeb and Busch, InTech, 2012]:

- Alignment issues
- Different BTP approaches for different characteristics

Security and Privacy Evaluation

Marta Gomez-Barrero

Evaluation

Cross-Matching Attacks

We can enroll with a single characteristic in different applications

Evaluation

Cross-Matching Attacks: How to?

s can be the dissimilarity score of the system or any other dissimilarity score, such as values extracted from partial decoding in fuzzy schemes

Marta Gomez-Barrero

Unlinkability Analysis: Current Status (I)

- Advantage of the attacker over a random guessing in the indistinguishability game
 - Problem 1: assumes uniformity of data not valid in biometrics
 - Problem 2: only analysed for fuzzy schemes not straightforward to apply to cancelable biometrics, since calculations rely on ECC properties

[Simoens09] K. Simoens, P. Tuyls, B. Preneel, "Privacy Weaknesses in Biometric Sketches", IEEE Symp. On Security and Privacy, 2009.

[Buhan09] I. Buhan, J. Breebaart, M. Guajardo *et al.,* "A Quantitative Analysis of indistinguishability for a continuous Domain Biometric Cryptosystem", *Int. Workshop on Data Privacy and Management*, 2009.

[Buhan10] I. Buhan, E. Kelkboom, J. Guajardo, "Efficient Strategies for Playing the Indistinguishability Game for Fuzzy Sketches", *IEEE Workshop on Information Forensics and Security*, 2010.

Marta Gomez-Barrero

Unlinkability Analysis: Current Status (II)

Plot a DET curve of genuine and impostor scores, comparing templates enrolled in different system

[Nagar10] A. Nagar, K. Nandakumar, A. K. Jain, "Biometric Template Protection Transformation: A Security Analysis", *SPIE, Electronic Imaging, Media Forensics and Security*, 2010.

[Kelkboom11] E. Kelkboom, J. Breebart, T. Kevenaar *et al.*, "Preventing the Decodability Attack based Cross-Matching in a Fuzzy Commitment Scheme", *IEEE TIFS*, 2011.

Marta Gomez-Barrero

Unlinkability Analysis: Current Status (III)

- Plot Mated and Non-mated samples distributions, for templates protected with different keys.
- \succ How to analyse those distributions? \Rightarrow Kullback-Leibler (D_{KL}) divergence

Evaluation

Unlinkability Analysis: Proposal

Two measures:

- Local measure $D_{\leftrightarrow}(s) \rightarrow$ for which scores is the system vulnerable?
- Global measure $D^{sys}_{\leftrightarrow}$ → how can we compare two systems globally?

Both bounded in [0,1], and defined for all dissimilarity scores.

General measures, valid for all BTP schemes

Full Unlinkability

Full Linkability

Evaluation

Semi-Linkable Scenario A

Evaluation

CRISP Center for Research in Security and Privacy

Semi-Linkable Scenario B

Evaluation

Local measure: Background

→ We are interested in evaluating: $D_{\leftrightarrow}(s) = p(H_m|s) - p(H_{nm}|s)$

> But we don't know $p(H_m|s)$, $p(H_{nm}|s)$

$$\blacktriangleright \text{ He can use LRs: } LR(s) = \frac{p(s|H_m)}{p(s|H_{nm})} = \frac{p(H_m|s)}{p(H_{nm}|s)} \cdot \frac{p(H_{nm})}{p(H_m)}$$

> Doing some tricks, we get:

$$p(H_m|s) = \frac{LR(s) \cdot \omega}{1 + LR(s) \cdot \omega} \qquad \omega = p(H_m) / p(H_{nm})$$

Marta Gomez-Barrero

Evaluation

Local measure: final definition

$$\mathbf{D}_{\leftrightarrow}\left(s\right) = \begin{cases} 0 & \text{if } LR\left(s\right) \cdot \omega \leq 1\\ 2\frac{LR\left(s\right) \cdot \omega}{1 + LR\left(s\right) \cdot \omega} - 1 & \text{if } LR\left(s\right) \cdot \omega > 1 \end{cases}$$

➢ If we know
$$p(H_m)$$
, $p(H_{nm})$, use them to set ω

➢ Otherwise, assume $p(H_m) = p(H_{nm})$ and $\omega = 1$

Evaluation

Global measure

Global measure

$$\begin{split} \int_{s_{min}}^{s_{max}} p\left(H_m \cap s\right) - p\left(H_{nm} \cap s\right) \mathrm{d}s &= \int_{s_{min}}^{s_{max}} p\left(s\right) \cdot \left(p\left(H_m|s\right) - p\left(H_{nm}|s\right)\right) \mathrm{d}s \\ &= p\left(H_m \int_{s_{min}}^{s_{max}} p\left(s|H_m\right) \cdot \left(p\left(H_m|s\right) - p\left(H_{nm}|s\right)\right) \mathrm{d}s \right) \\ &\neq (H_{nm}) \int_{s_{min}}^{s_{max}} p\left(s|H_{nm}\right) \cdot \left(p\left(H_m|s\right) - p\left(H_{nm}|s\right)\right) \mathrm{d}s \end{split}$$
$$\begin{aligned} &\mathbf{D}_{\leftrightarrow}^{sys} = \int_{s_{min}}^{s_{max}} p\left(s|H_m\right) \cdot \mathbf{D}_{\leftrightarrow}\left(s\right) \mathrm{d}s \end{split}$$

Marta Gomez-Barrero

Linkability Scenarios: Summary

Evaluation

Marta Gomez-Barrero

Cancelable Biometrics Based on Bloom Filters

Marta Gomez-Barrero

Bloom Filters

Why Bloom filters?

[Bloom, *Comm. of the ACM* 1970] [Broder and Mitzenmacher, *Internet Mathematics* 2004]

- Biometric Template Protection based on Bloom filters:
 - **General**: successfully applied to iris, face, fingerprint, fingervein
 - Multimodal: feature level fusion
 - o Irreversibility achieved
 - Accuracy, depending on the configuration, preserved
 - Template size: similar or compressed
 - Verification speed similar

But we need to add unlinkability

And find a way to fuse templates of different sized (Multi-Biometrics)

General architecture

- Adding unlinkability:
 - Small complexity
 - Small impact on accuracy

Random shuffling of bits $\Rightarrow \uparrow EER > 40\%$

Marta Gomez-Barrero

Marta Gomez-Barrero

Bloom filters

Accuracy Analysis

Marta Gomez-Barrero

Bloom filters

Irreversibility analysis

> Are the reconstructed unprotected templates similar to the original ones?

Bloom filters

Unlinkability analysis (I)

BTP Based on Homomorphic Encryption

Marta Gomez-Barrero

BTP & HE

Why Homomorphic Encryption?

- BTP based on Homomorphic Encryption:
 - General
 - Accuracy fully preserved
 - Permanent protection: all computations in the encrypted domain
 - Irreversibility and unlinkability achieved
 - Renewability with no re-acquisition

Limitation on the number of operations in the encrypted domain

Secret key + protected template = unprotected template compromised

[Fontaine *et al., EURASIP J. Inf. Sec.* 2007] [Lagendijk *et al., IEEE SP Mag.* 2013]

Marta Gomez-Barrero

BTP & HE

Homomorphic Encryption

- Practical implementation: Paillier Cryptosystem [P. Paillier, EUROCRYPT, 1999]
- HE- Paillier: based on the DECISIONAL COMPOSITE RESIDUOSITY ASSUMPTION

DCRA: given a composite *n* and and integer *z*, it is (very) hard to decide whether there exists *y* such that: $z = y^n \pmod{n^2}$

BTP & HE

Additive Homomorphic Encryption

Multi-Biometrics

Marta Gomez-Barrero

Encrypted distance computation

Euclidean distance: Given two vectors \mathbf{T}_p and $E(\mathbf{T}_r)$, of length F

$$S_{euc} = \sum_{f=1}^{F} p_f^2 + r_f^2 - 2p_f r_f$$

Finse Winter School '17 – Biometric Template Protection, 9/5/17

Cosine similarity: Given two vectors \mathbf{T}_p and \mathbf{T}_r , of length F $d_{cos} (\mathbf{T}_p, \mathbf{T}_r) = \frac{\mathbf{T}_p \cdot \mathbf{T}_r}{\|\mathbf{T}_p\| \cdot \|\mathbf{T}_r\|} = \sum_{f=1}^F \frac{p_f \cdot r_f}{\|\mathbf{T}_p\| \cdot \|\mathbf{T}_r\|}$

$$d_{cos}\left(\mathbf{T}_{p},\mathbf{T}_{r}\right)\in\left[0,1\right] \quad \Longrightarrow \quad S_{cos}=10^{12}d_{cos}\left(\mathbf{T}_{p},\mathbf{T}_{r}\right)$$

Encrypted Cosine similarity: Given two vectors T_p and $E(T_r)$, of length F

$$E(S_{cos}) = \prod_{f=1}^{F} E\left(\frac{10^6 r_f}{\|\mathbf{T}_r\|}\right)^{10^6 p_f / \|\mathbf{T}_p\|}$$
Encrypted reference
template stored in DB
Marta Gomez-Barrero

Feature Level Fusion Accuracy Eva Unprotected Euc, EER = 0.1 40 Protected Euc, EER = 0.1 Unprotected Cos, EER = 3.0 False Non-Match Rate (%) Protected Cos, EER = 3.0 20 10 5 2 1 0.5 0.2 0.1 0.10.20.5 1 2 5 10 20 False Match Rate (%)

RioSocurID DR [Figres at al DAA 2000]

Accuracy is fully preserved at all operating points

40

Marta Gomez-Barrero

Finse Winter School '17 – Biometric Template Protection, 9/5/17

Unlinkability Analysis

Full unlinkability, as long as the secret key is not compromised

Marta Gomez-Barrero

Finse Winter School '17 – Biometric Template Protection, 9/5/17

Computational Overhead

- > 1 real value (16 bits) \rightarrow 2,048 bits encrypted \rightarrow x 128 increase factor
- Depending on distance, more values need to be stored

Unprotected template:

F real values → 0.27 KB

Euclidean distance template: 2F + 1 encrypted values \rightarrow 70.25 KB Cosine distance template: *F* encrypted values \rightarrow 35 KB

Storage requirements and communication bandwidth multiplied by 128 - 256

However, templates are still small enough for real time apps

Summary

Marta Gomez-Barrero

Finse Winter School '17 – Biometric Template Protection, 9/5/17

44/47

- Methodology for a standardized security and privacy evaluation of BTP schemes
- BTP schemes based on Bloom filters or Homomorphic Encryption comply with ISO/IEC IS 24745, providing irreversibility, unlinkability, renewability and accuracy preservation
- MBTP schemes based on Bloom filters or Homomorphic Encryption achieve higher accuracy and privacy protection

Summary

- Bloom filters advantages:
 - **Compressed** templates
 - Irreversibility even if key is compromised
 - Low computational load

HE advantages:

- Full accuracy preservation
- Revocability with no reacquisition
- Higher degree of unlinkability

- Bloom filters limitations:
 - Some accuracy degradation depending on feature extractors
 - Some accuracy degradation at low FMRs

- HE limitations:
 - Key compromised → reversible
 - Storage requirements x 128

Marta Gomez-Barrero

(marta.gomez-barrero@h-da.de)

