Constrained approximate search in
misuse-based intrusion detection

Ambika Shrestha Chitrakar
Supervisor: Prof. Slobodan Petrovic

FINSE
10th of may 2017

>
(@))
(@)
—
(@)
(=
L=
O
(¢))
-
©
(=
(g0}
()
O
=
o
(&
(Vp)
—
(@)
>
et
n
—
(D)
=
(=
=
=
K
(@))
(D)
3
i
o
Z

Contents

Introduction
— Snort: a misuse-based intrusion detection
— Problem with Snort
— Proposed solutions

« Background and related work
— Approximate search
— Constrained approximate search

« CRBP-OpType and CRBP-OpCount

« Experiment and results

 Discussion and Conclusion

Introduction

* Snort: a misuse-based intrusion detection
— Detects intrusions based on attack signatures stored as rules

— One of the ways to detect attacks is by matching the payload information of the
network traffic with the content field of the Snort rules

— Uses Aho-corasick (exact search)

 Problem with Snort:
— Snort fails to detect new attacks

— Moreover, same attacks with small changes in the attack pattern can also evade
Snort

* Proposed solutions:
— Approximate search?
— What about constrained approximate search?

Background

Approximate search:

Allows some level of errors/tolerance to find the occurrences of the search
pattern in the given string

Uses distance functions such as hamming distance, Lavenshtein distance

Given string T=abbaccacbbadrbbb, and pettern P = bbba, find all the
occurrences of P in T with errors k=1, using edit distance
* abbaccacbbadrbbb - occurrences at position 4, 11, and 16

Application: digital forensics, text-retrieval, computational biology etc.

Background

« Constrained approximate search:
— More precise than approximate search
— Errors can be defined on the type of edit operation

Only substitutions, only deletions and substitutions, only insertions and substitutions etc

Errors can also be defined on the allowed number of each edit operations
* If k=5, insertions=1, deletions=2, substitutions=2

« When to use constrained approximate search?

— When one knows the probability of errors and want to be more precise than
unconstrained approximate search

— Given a set of strings T: {threat, thrett, treat} and pattern P: threat, find all the
occurrences of P in T, with errors k=1 and constraint only 1 substitution
* Matches threat with O error

* Matches thrett with one character substitution

No match with treat, but its a match when unconstrained approximate search is applied

Related work

« Constraints on indels: Sankoff-Indels
— Based on dynamic programming

 Constraints on indels: CRBP-Indels
— based on automata theory

« Constraints on each edit operations: CRBP-OpCount
— Based on automata theory

CRBP-OpType and CRBP-OpCount

 Based on Row-wise Bit-Parallel algorithm by Wu and Manber

Experiment

conf -1 C\Snort\log -K ASCI -A ... [= |[& |

Copyright <(C> 2014-2016 C o and/or affiliates. All righ

opyright (C) 1998-2013 Sourcefire, I .. et al.
ing PCRE versi 8.10 20108-86-25
ing ZLIB versi)

sion 3.8 <Build 1>

| <Build 4>

. P 3 {Build 3>

Attacker machine Bpzo S sme Gt A3
P S 3 j {Build 1>
P 3 P 3 i 1 <Build 1>

_REPUTATION i - <Build 1>

PyCharm

<Build 1>

SF_POP Uersio
SF_MODBUS VUersion 1.1 <Build 1>
1M ion 1.8 <Build 1>
1.1 <Build 1>
<Build 13>
4>

Victim machine (web server)

Experiment

>sql = ssword."";

$sql =
Bl C\Windows\systerm32\cmd.exe - snort -c Ch\Snort\etc\snort.conf -1 C:\Snort\log -K ASCI -A ... EI@

Using PCRE version: 8.10 20918-B6-25
Using ZLIB version: 1.2.3

Rules Engine: SF_SNORT_DETECTION_ENGIME VUersion 3.8 <Build 12>
(' Preprocessor Object: SF_SSLPP Uersion 1.1 <Build 4>
Preprocessor Object: SF_SSH Version 1.1 <Build 3> "\\'Hal_i Do
Preprocessor Object: SF_SHMIP Uersion 1.1 «Build 7>
MD Preprocessor Object: SF_SIP Uersion 1.1 «Build 1>

Preprocessor Object: SF_SDF Version 1.1 «Build 1>

P rsocessor Object: SF_REPUTATION Version 1.1 <Build 1>
socessor Object: SF_POP Uersion 1.8 <Build 1>

Preprocessor Object: SF_MODBUS Uersion 1.1 <Build 1>

Us Preprocessor Object: SF_IMAP Uersion 1.8 <Build 1>

Preprocessor Object: SF_GTP Uewrsdion 1.1 <Build 1>

Preprocessor Object: SF_FIPTELMET Uersion 1.2 <Build 13>

Preprocessor Object: SF_DNS Uersion 1.1 «Build 4>

Preprocessor Object: SF_DNP3 Uersion 1.1 «Build 1>

Preprocessor Object: SF_DCERPCZ Uersion 1.8 <Build 3>

U Commencing packet processing (pid=2788> f5[]35
Ser B /B4-@5:25:18. 829844 [**] [1:3AA48:2]1 SQL 1 = 1 — possible sgl injection al

pt [#%] [Classification: UWeh Application Attack] [Priority: 11 {TCP} 10.9.2.
2492 -> 18.8.2_.25:8A

Pass

| Logi

Experiment

4 |)| 10.0.2.25/vulnerab

L6y

% Most Visited v Jll Offensive Security S Kali Linux % Kali Do

Copyrlght (C> 2014-20816 Cisco and/or its affiliates. All 1*1g}1t‘. P ZEfSDaS

Copyrlght (C> 1998-2013 Sourcefire, Inc., et al.
Using PCRE version: 8.18 2018-86-— 25
Using ZLIB version: 1.2.3

Rules Engine: SF_SNORT_DETECTION_ENGINE Uersion 3.8 <Build 1>
Preprocessor Object: SF_SSLPP Uersion 1.1 <Build 4>
Preprocessor Object: SF_SSH VUersion 1.1 <Build 3>
Preprocessor Object: SF_SMIP VUersion 1.1 <Build 9>
Preprocessor Obhject: SF_SIP Uersion 1.1 <Build 1>
Preprocessor Object: SF_SDF Uersion 1.1 <Build 1>
Preprocessor Object: SF_REPUTATION VUersion 1.1 <Build 1>
Preprocessor Object: SF_POP VUersion 1.8 <Build 1>
Preprocessor Object: SF_MODBUS VUersion 1.1 <Build 1>
Preprocessor Object: SF_IMAP VUersion 1.8 <Build 1>

Object: SF_GTP Version 1.1 <Build 1>

Object: SF_FTPTELNET Uersion 1.2 <Build 13>
Preprocessor Object: SF_DNS Uersion 1.1 <Build 4>
Preprocessor Object: Uersion 1.1 <Build 1>
Preprocessor Ohject: SF_DCERPC2 VUersion 1.8 <Build 3>

Commencing packet processing (pid=2788)>

[N

| T, AT A |

w
e~}
=
z
-]
w

Pattern |k Total | TP |[FP (TN |Time
1=1 2 200 10| 190 0 10
RBEP "1'="1" 4118131821619 12 43
Pattern |k Total |[TP |FP |TN [Time
1=1 5=2 2001 10| 159 31 9
CRBP-OpType |('1'="1" |[is=4 1813 182|1594| 37 33
Pattern |k Total |[TP |FP |TN [Time
1=1 5=2 200| 10| 159| 31 21
CRBP-OpCount |'1'='1" |i=2,5=2| 1813|182| 977|654 144

Discussion

« Constrained and unconstrained search algorithms can be used to
detect new similar attacks

« Unconstrained approximate search can generate lot of false
positives

« CRBP-OpType and CRBP-OpCount algorithms can be used to
reduce the number of false positives

« Better to use CRBP-OpType algorithm if attacks can be detected
by specifying the type of edit operations

« Better to use CRBP-OpCount if we know the probability of
changes in each edit operations

« CRBP-OpCount is complex compared to CRBP-OpType, due to
use of counters in each states

Conclusion

« Exact search is important when attack signatures does not vary
for a particular attack

« Unconstrained approximate search is useful when attack
signature can vary by some edit operations and probability of error
type is unknown

« The constrained approximate search can be used when
probability of error types is known

Thank you!

