
Reading memory, without reading memory

Christian W. Otterstad1

Department of Informatics, University of Bergen,
Bergen, Norway, April 25, 2016

Extended abstract.

This study is regarding the feasibility of the notion of reading memory indirectly,
for the specific purpose of defeating XnR, Execute-no-Read. This research is as
of this writing date unfinished.

An attacker facing modern systems with a fine granularity ASLR (Address Space
Layout Randomization) implementation requires in many cases a memory dis-
closure vulnerability or some other memory read primitive in addition to the
original exploitable vulnerability.

In classical exploitation the attacker was able to execute arbitrary machine code
on the stack and heap, which often were attacker controlled by the very nature
of the bug being exploited in the first place. However, with modern mitigation
techniques this is no longer feasible for the attacker. In particular, the defender
typically employs at least the NX (No-eXecute) bit, ASLR and RAP (Return
Address Protection). In special combinations, especially with low granularity
ASLR on 32-bit machines, brute force might be sufficient, or if the NX bit is not
used for a particular vulnerable memory region, the attacker might still succeed
with classical methods.

Exploitation techniques have evolved to heavily employ code reuse. In partic-
ular, return-to-libc by Solar Designer was probably the pivotal point towards
the modern technique of return oriented programming (ROP). Return oriented
programming employs a concatenation of pointers on the stack, allowing the
stack pointer to become an instruction pointer. This technique has been shown
to be Turing complete for a sufficient set of gadgets, where gadgets are short
code sequences terminated by a return instruction. [1] A variant of this is JOP
(Jump-Oriented Programming). [2]

However, higher level granularity ASLR prevents the attacker from a priori
knowing the memory locations of said gadgets. For this reason, the attacker
needs a memory reading primitive or information leak to be able to infer these
memory locations which are required for the attack.



The ability to read memory prior to launching an exploit egg has therefore be-
come a crucial primitive for modern low-level exploitation. [3][4] A natural mit-
igation for this issue is to increase the granularity at which memory operations
are constrained for the attacker. Akin to hardware protection for disabling exe-
cution at page level granularity, the notion of disabling read permission at page
level granuarlity has been presented. [5] Execute-no-Read suggests a scheme by
which the kernel protects selected memory regions from being read. Effectively
preventing any memory read primitive from being iterated or used even once by
the attacker. This study attempts to see if XnR can be defeated by indirectly
reading memory.

Work in this area has been performed with success before. In particular, the
“Braille” project in “Hacking Blind” presents some techniques for doing this.
This study attempt to extend these results and use the same techniques to de-
feat XnR.

Braille works by building only enough gadgets to perform a read and dump
the memory to the existing socket. This enables the program to perform in-situ
memory inspection, irrespective of any diversity, memory permutation or ASLR
entropy. However, the specific step of reading memory is prevented by XnR, as
pointed out in the original paper. Specifically, XnR recognizes Braille as a threat,
but describes it as unlikely to succeed due to the large number of requests to
find even a single gadget. It must also be pointed out that the attack models
assumes a forking server.

The challenge for the attacker then becomes to find all of the required gadgets
without being able to read any memory directly, as performed by Braille.

For this study, an attack program was implemented in C based on the technique
described in [4]. The buffer size is simply found by a binary search. Then, sim-
ilarly to in [6][4] the stack canary, RBP and RIP are found using brute force.
Brute force is effective here due to the fact that each byte can be brute forced
individually. The program then proceeds to find gadgets by brief ROP sequences
that are able to determine the presence of stack popping gadgets and eventually
perform a syscall through the PLT. The goal is then to perform either a mpro-
tect() to disable the XnR or to perform the full attack by only indirect reads.

The problems and results encountered are particularly that the defender suf-
fers extreme slowdown. This is caused in particular by arc injections that enter
non-blocking loops. Each such loop causes a 100% load per core and quickly
consumes system resources.



The preliminary results are as of now that the performance issues appear to
be an open problem. However, the limitations and overall generalization of the
technique is still noteworthy to investigate further.

References

1. H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86),” in Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS ’07, (New York, NY, USA), pp. 552–561,
ACM, 2007.

2. T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming:
a new class of code-reuse attack,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’11, (New York,
NY, USA), pp. 30–40, ACM, 2011.

3. K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi,
“Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization,” in Proceedings of the 2013 IEEE Symposium on Security and Pri-
vacy, SP ’13, (Washington, DC, USA), pp. 574–588, IEEE Computer Society, 2013.

4. A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hacking blind,”
in Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, (Wash-
ington, DC, USA), pp. 227–242, IEEE Computer Society, 2014.

5. M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny, “You can
run but you can’t read: Preventing disclosure exploits in executable code,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, (New York, NY, USA), pp. 1342–1353, ACM, 2014.

6. H. Marco-Gisbert and I. Ripoll, “On the effectiveness of Full-ASLR
on 64-bit Linux.” http://cybersecurity.upv.es/attacks/offset2lib/

offset2lib-presentation.pdf, 2014. [Online; accessed 18-April-2016].


