
Authenticated	Encryption	
and	Secure	Channels		

Kenny	Paterson	

Information	Security	Group	

@kennyog;	www.isg.rhul.ac.uk/~kp	

Overview	

•  Secure	channels	and	their	properties	
•  Security	for	symmetric	encryption	–	from	block	
ciphers	to	AEAD	

•  Going	beyond	AEAD	–	the	ciphertext	fragmentation	
and	streaming	settings.	

2	

Secure	channels	and	their	properties	

Why	do	we	need	secure	channels?	

•  Secure	communications	is	the	most	common	real-
world	application	of	cryptography	today	(discuss!)	

•  Consequently,	secure	channels	are	extremely	widely-
deployed	in	practice:	

•  SSL/TLS,	DTLS,	IPsec,	SSH,	OpenVPN,…	
•  WEP/WPA/WPA2	
•  GSM/UMTS/LTE	
•  Cryptocat,	OTR,	SilentCircle	
•  Telegram,	Signal,	iMessage,	and	a	thousand	other	

messaging	apps		
•  QUIC,	MinimalT,	TCPcrypt	

4	4	

•  Two	entities	exchange	a	sequence	of	messages	over	an	insecure	channel.	

•  Entities	are	often	called	Alice	and	Bob,	but	they	need	not	be	people.	

•  The	messages	will	be	sent	over	a	communications	network,	e.g.	a	wireless	
LAN,	“the	Internet”.	

•  Alice	and	Bob	use	cryptography	to	make	build	a	secure	communications	
channel	on	top	of	the	insecure	channel.	

Secure	communications	

5	

m1	

m2	

•  The	messages	that	are	exchanged	should	remain	confidential.	

•  It	should	be	hard	for	the	adversary	to	inject	messages	of	his	own	into	the	
sequence	–	so	Alice	and	Bob	should	be	able	to	check	the	authenticity	of	
origin	and	integrity	of	the	messages.	

•  Alice	and	Bob	should	be	able	to	detect	when	messages	are	deleted.	

•  Alice	and	Bob	should	be	able	to	detect	when	messages	are	reordered	
(possibly	by	the	adversary,	possibly	by	the	network).	

Secure	communications:	Security	goals	

6	

m1	

m2	

•  The	adversary	can	see	all	the	data	being	transferred	on	the	network	
(passive	adversary).	

•  The	adversary	has	sufficient	control	over	the	network	that	he	can	delete,	
delay,	modify	and	reorder	network	packets	at	will	(active	adversary).	

•  The	adversary	can	inject	entirely	new	network	packets	(active	adversary).	

•  To	what	extent	are	these	capabilities	realistic?	

Secure	communications:	Adversarial	capabilities	

7	

m1	

m2	

•  The	adversary	may	have	even	greater	capabilities:	
•  He	can	ask	for	specific	messages	m	of	his	choice	to	be	passed	over	the	secure	channel	

(chosen	plaintext	attack).	

•  He	can	observe	the	effects	on	network	messages	when	he	injects	network	packets	of	his	
own	(chosen	ciphertext	attack).	

•  For	example,	he	may	be	able	to	observe	error	messages	exchanged	between	the	entities	
in	response	to	the	messages	he	injects,	and	this	may	leak	useful	information.	

Secure	communications:	Adversarial	capabilities	

8	

m1	

m2	

Basic	security	goals	

•  Confidentiality	–	privacy	for	data	
•  Integrity	–	detection	of	data	modification	

•  (Data	Origin)	Authenticity	–	assurance	concerning	
the	source	of	data	

•  (Often	integrity	and	authenticity	are	equated/
confused	–	for	example	“Authenticated	Encryption”.)	

9	9	

Some	less	obvious	security	goals	

•  Anti-replay		
•  Detection	that	messages	have	been	repeated	

•  Drop-detection		
•  Detection	that	messages	have	been	deleted	by	the	adversary	

or	dropped	by	the	network.	

•  Prevention	of	re-0rdering	
•  Preserving	the	relative	order	of	messages	in	each	direction.	

•  Preserving	the	relative	order	of	messages	sent	and	received	in	
both	directions.	

•  Prevention	of	traffic-analysis.	
•  Using	traffic	padding	and	length-hiding	techniques.	

10	10	

Possible	functionality	requirements	

•  Speedy	
•  Low-memory	

•  On-line/parallelisable	crypto-operations	
•  Performance	is	heavily	hardware-dependent.	

•  May	have	different	algorithms	for	different	platforms.	

•  IPR-friendly	
•  This	issue	has	slowed	down	adoption	of	many	

otherwise	good	algorithms,	e.g.	OCB.	

•  Easy	to	implement		
•  Without	introducing	any	side-channels.	

11	11	

API	requirements	

•  We	need	a	clean	and	well-defined	Application	Programming	
Interface	(API).	

•  Because	the	reality	is	that	our	secure	channel	protocol	will	
probably	be	used	blindly	by	a	security-naïve	developer.	

•  Developers	want	to	“open”	and	“close”	secure	channels,	and	
issue	“send”	and	“recv”	commands.	

•  They’d	like	to	simply	replace	TCP	with	a	“secure	TCP”	having	
the	same	API.	

•  Or	to	just	have	a	black-box	functionality	for	delivering	
messages	securely.	

12	12	

Additional	API-driven	requirements	

•  Does	the	channel	provide	a	stream-based	functionality	or	a	
message-oriented	functionality?	

•  TCP-like	or	UDP-like?	

•  Does	the	channel	accept	messages	of	arbitrary	length	and	
perform	its	own	fragmentation	and	reassembly,	or	is	there	a	
maximum	message	length?	

•  How	is	error	handling	performed?	Is	a	single	error	fatal,	
leading	to	tear-down	of	channel,	or	is	the	channel	tolerant	of	
errors?	

•  How	are	these	errors	signalled	to	the	calling	application?	How	
should	the	programmer	handle	them?	

13	13	

Additional	API-driven	requirements	

•  Does	the	secure	channel	itself	handle	retransmissions?	Or	is	
this	left	to	the	application?	Or	is	it	guaranteed	by	the	
underlying	network	transport?	

•  Does	the	channel	offer	data	compression?	

•  These	are	design	choices	that	all	impact	on	security	

•  They	are	not	well-reflected	in	security	definitions	for	
symmetric	encryption	

•  Main	question:	how	can	we	use	symmetric	encryption	to	
build	secure	channels?	

14	14	

Block	ciphers	

Defining	block	ciphers	

•  Block	ciphers	encrypt	and	decrypt	blocks	of	bits:	n	bits	at	a	
time.	

•  Typically,	n	=	64	(eg	DES)	or	n	=	128	(AES).	

•  Encryption	is	under	the	control	of	a	key	K	of	size	k	bits.		
•  Typically,	k	=	64	or	k	=	128.	

16	

block
cipher

Plaintext	P	(n	bits)	

Key	K	
	(k	bits)	

	

Ciphertext	C	(n	bits)	

block
cipher
inverse

Ciphertext	C	

Key	K	
	

Plaintext	P	

Defining	block	ciphers	

Definition:		

A	block	cipher	with	key	length	k	and	block	size	n	consists	of	two	sets	of	
efficiently	computable	bijections:	

	

	 	 	EK:	{0,1}n			-->	{0,1}n 	 	and	 		DK:	{0,1}n			-->	{0,1}n	

	

such	that	DK		is	the	inverse	of	EK	for	each	K	in	{0,1}k.	

	

Notes:	

•  E	stands	for	encipher,	D	for	decipher	(not	encrypt/decrypt).	
•  Elements	K	in	{0,1}k		are	called	keys;	there	are	2k	possible	keys.	

		
17	

Security	for	block	ciphers:	Pseudorandomness	

•  Each	key	K	gives	a	different	pair	of	bijections	(EK,	DK).	

•  So	a	block	cipher	gives	us	2k	bijections	from	n	bits	to	n	bits.	

•  But	here	are	a	total	of	(2n)!	bijections	from	n	bits	to	n	bits.	

•  And	(2n)!		>>	2k		for	typical	block	cipher	parameters.	

•  We	would	like	each	bijection	from	the	block	cipher	to	“look	
like”	a	random	bijection,	even	though	it	comes	from	a	tiny	set.	

•  Another	word	for	a	bijection	is	a	permutation.	

18	

Security	for	block	ciphers:	Pseudorandom	Permutations	
(PRPs)	

•  This	can	be	formalised	as	a	pseudorandomness	property:	

•  A	distinguisher	D	interacts	either	with	(EK,	DK)	for	a	random	
choice	of	K,	or	with	a	random	bijection	and	its	inverse	(π,	
π-1).	

•  The	block	cipher	is	said	to	be	a	strong-PRP	if	there	is	no	
efficient	D	that	can	tell	the	difference	between	(EK,	DK)	and	
(π,	π-1).	

•  The	block	cipher	is	said	to	be	a	PRP	if	there	is	no	efficient	D	
that	can	tell	the	difference	between	EK	and	π.	

•  Efficiency	of	D	can	be	quantified	by	the	resources	consumed	
by	D:	number	of	queries	to	(EK,	DK)	/	(π,	π-1)	and	its	running	
time.	

19	

20	

Formal	definition	of	PRP	security	

Distinguisher	D	

x	

y	

b'	

AdvE				(D):=	Pr[b’=1	|	b=1]	–	Pr[b’=1	|	b=0]	

b	=	0:		K	←$	{0,1}k	

	
y	=	EK(x)	

	

	

b	=	1:	π	←$	Permn	
	

y	=	π(x)	

PRP	

21	

Formal	definition	of	PRF	security	

Distinguisher	D	

x	

y	

b'	

AdvE				(D):=	Pr[b’=1	|	b=1]	–	Pr[b’=1	|	b=0]	

b	=	0:		K	←$	{0,1}k	

	
y	=	EK(x)	

	

	

b	=	1:	F	←$	Funcn	

y	=	F(x)	

PRF	

The	PRP/PRF	switching	lemma	

A	PRP	for	large	n	is	already	a	good	PRF!	(and	vice-versa).	

	

Theorem	(informal)	

For	any	distinguisher	D	making	at	most	q	oracle	queries,	the	difference	in	PRP	
and	PRF	advantages	of	D	is	at	most	q2/2n.	

	

The	proof	uses	relatively	straightforward	birthday	bounds.	

Loosely	speaking,	this	means	we	can	think	of	good	block	ciphers	as	being	
either	random	functions	or	random	permutations	(when	secretly	keyed).	

	

Security	for	symmetric	encryption	

24	

Modes	of	operation	

•  A	block	cipher	encrypts	a	message	of	exactly	n	bits.	
•  What	if	the	message	is	not	a	multiple	of	n	bits?	

•  What	if	the	message	is	not	of	a	fixed	length	but	actually	a	TCP-like	stream?	

•  Modes	of	operation	provide	different	ways	of	using	a	block	
cipher	to	encrypt	flexible	amounts	of	data.	

•  Different	performance	characteristics.	

•  Different	error-propagation	properties.	

•  Different	suitability	for	different	applications	.	

25	

Main	modes	of	operation	

•  FIPS	81	specifies	four	modes	for	DES.	
•  ECB	-	Electronic	Code	Book.	

•  CBC	-	Cipher	Block	Chaining.	

•  CFB	-	Cipher	Feedback.	

•  OFB	-	Output	Feedback.	

•  ANSI	X9.52	specifies	7	modes	for	triple-DES	
•  The	four	modes	above	and	variants.	

•  Most	common	modes	now	in	use:	CBC	mode	and	Counter	
Mode	(CTR).		

26	

Electronic	Code	Book	(ECB)	

•  ECB	is	the	simplest	way	to	use	a	block	cipher	to	encrypt	
longer	messages.	

	

•  Split	message	into	blocks.	

•  Encryption	can	be	parallelized.	

•  Any	error	in	a	ciphertext	block	affects	the	decryption	of	a	
single	block.	

EK	 EK	 EK	 EK	
….	

27	

ECB	information	leakage	

•  For	a	fixed	key	K,	a	given	block	of	plaintext	is	always	encrypted	
in	the	same	way	to	produce	the	same	ciphertext	block.	

•  Encryption	is	deterministic.	

•  Leads	to	serious	information	leakage	in	many	applications.	

•  ECB	mode	is	very	rarely	the	correct	mode	to	use...		

28	

ECB	information	leakage	
https://filippo.io/analyzing-the-adobe-leaked-passw

ords/	

29	

ECB	information	leakage	

Tux	the	Penguin,	the	
Linux	mascot.	Created	
in	1996	by	Larry	Ewing	

with	The	GIMP.	
lewing@isc.tamu.edu	

	

ECB-Tux	
	

CBC	mode	

•  Aims	to	hinder	information	leakage	of	ECB	mode.	

•  Uses	previous	ciphertext	block	(or	IV)	to	randomise	the	input	to	the	block	cipher	at	
each	application.	

•  Not	parallelisable.	

31	

Cipher		Block	Chaining	(CBC)	mode	

EK	

⊕	IV	

P1	

C1	

EK	

⊕	

C2	

P2	

Encryption	equation:	

C0	=	IV	

Ci	=	EK(Pi		⊕	Ci-1)	

Decryption	equation:	

So:	

	DK(Ci)		=	Pi		⊕	Ci-1		

and	hence:	

	DK(Ci)	⊕	Ci-1=	Pi		

	

	

32	

CBC	mode	decryption	

⊕	

P1	 P2	

DK	
IV	

C1	

DK	

C2	

⊕	

Encryption	equation:	

C0	=	IV	

Ci	=	EK(Pi		⊕	Ci-1)	

Decryption	equation:	

So:	

	DK(Ci)		=	Pi		⊕	Ci-1		

and	hence:	

	DK(Ci)	⊕	Ci-1=	Pi		

	

	

33	

Error	propagation	in	CBC	

•  Suppose	an	error	arises	in	ciphertext	block	C2.	

⊕	

P1	 P2	

DK	
IV	

C1	

DK	

C2	

⊕	 ⊕	

P3	 P4	

DK	

C3	

DK	

C4	

⊕	

•  Then	the	error	propagates	to	P3,	and	P2	gets	randomised.		

•  IV	is	needed	for	decryption;	often	written	as	C0	to	emphasize	this	(ciphertext	expansion:	
ciphertext	at	least	one	block	larger	than	plaintext).	

•  IV	needs	to	be	random	and	unpredictable	for	each	message	encrypted	(requires	a	good	
source	of	randomness).	

•  Padding	may	be	needed	to	make	plaintext	into	a	whole	number	of	blocks.	

	

34	

Further	remarks	on	CBC	mode	

EK	

⊕	IV	

P1	

C1	

EK	

⊕	

C2	

P2	 Encryption	equation:	

C0	=	IV	

Ci	=	EK(Pi		⊕	Ci-1)	

Decryption	equation:	

Pi	=	DK(Ci)	⊕	Ci-1	

	

35	

Counter	Mode	(CTR)	encryption	

…		EK	

⊕	P1	 C1	

ctr1	

EK	

⊕	P0	 C0	

ctr0	

EK	

⊕	P2	 C2	

ctr2	

•  ctri		is	set	to	be	an	incrementing	counter.	

•  No	padding	is	needed	since	last	block	of	output	can	be	truncated	to	required	length.	

•  Parallelisable,	can	also	pre-compute	encryption	masks	before	plaintext	known.	

mask0	 mask1	 mask2	

36	

Counter	Mode	(CTR)	encryption	

•  CTR	is	a	stream	cipher	mode.	

•  Turns	a	block	cipher	into	a	stream	cipher.	

•  Block	ciphers	usually	slower	than	dedicated	stream	cipher	designs	in	general,	so	still	a	
place	for	stream	ciphers	in	applications.	

•  Error	propagation:	a	bit-flip	in	the	ciphertext	leads	to	a	bit-flip	in	the	
plaintext.	

•  More	generally,	XOR	of	a	mask	Δ	with	the	ciphertext	leads	to	the	same	mask	Δ		being	
XORed	onto	the	plaintext.	

•  So	CTR	mode	does	not	provide	any	integrity.	

•  Did	CBC	mode?	

37	

Counter	Mode	(CTR)	encryption	

•  Key	security	requirement:	for	a	fixed	key	K,	counter	values	must	not	repeat.	

•  Similar	to	keystream	repeat	issue	for	a	stream	cipher:	XOR	of	ciphertexts	yields	
XOR	of	plaintexts.	

•  Achieved	by:	

•  Starting	with	ctr0	=	0	and	changing	key	for	every	plaintext	(often	
impractical);	

•  OR	starting	with	a	random	value	for	ctr0	for	each	plaintext	(requires	a	good	
source	of	randomness,	need	to	avoid	collisions);	

•  OR	maintaining	a	record	of	the	last	value	of	ctri	used	(requires	state	in	
encryption	algorithm,	needs	to	survive	across	power	cycles).	

•  OR	constructing	ctri	by	concatenating	a	per	plaintext	nonce	supplied	by	the	
calling	application	and	an	internal	counter	(starting	from	zero	for	each	new	
plaintext)	(requires	per	plaintext	nonce	to	not	repeat,	hence	some	kind	of	
state	needed	in	application).	

38	

Towards	security	for	symmetric	encryption	

•  These	modes	are	instances	of	symmetric	encryption	schemes	

•  Before	defining	security,	we	first	need	a	general	definition	for	symmetric	
encryption.	

•  Then	we	need	to	ask:	what	is	our	security	target?	Possibly	confidentiality,	
but	not	integrity	for	CTR	and	CBC	modes.	

•  What	resources	does	the	attacker	have?	Ciphertext	only?	Chosen	plaintext?	
Chosen	ciphertext	+	decryption	capability?	

•  (Security	will	turn	out	to	rely	on	pseudorandomness	of	block	cipher.)	

39	

Formalising	Symmetric	Encryption	

A	symmetric	encryption	scheme	consists	of	a	triple	of	algorithms:	SE	=	(KGen,Enc,Dec).	

KGen:	key	generation,	usually	selects	a	key	K	uniformly	at	random	from	{0,1}k.	

Enc:	encryption,	takes	as	input	key	K,	plaintext	m	∈	{0,	1}∗	and	produces	output	 	
	c∈	{0,	1}∗.	

Dec:	decryption,	takes	as	input	key	K,	ciphertext	c	∈	{0,	1}∗	and	produces	output	 	
	m	∈	{0,	1}∗	or	an	error	message,	denoted	┴.	

Correctness:	we	require	that	for	all	keys	K,	and	for	all	plaintexts	m,		

DecK(EncK(m))	=	m.	

	

Notes:	

•  Enc	may	be	randomised	and	may	be	stateful	(cf.	CBC	mode,	CTR	mode).	

•  Dec	may	be	stateful,	usually	not	randomised.	

•  In	reality,	there	will	be	a	maximum	plaintext	length	that	can	be	encrypted	by	a	given	
scheme.	

	

	

40	

IND-CPA	security	for	SE	

•  The	adversary	has	repeated	access	to	Left-or-Right	(LoR)	encryption	
oracle.	

•  In	each	query,	the	adversary	submits	pairs	of	equal-length	plaintexts	
(m0,m1)	to	the	oracle.	

•  We	can	have	m0	=	m1,	so	we	get	an	encryption	capability		“for	free”.	

•  The	adversary	gets	back	c,	an	encryption	of	mb,	where	b	is	a	fixed	but	
random	bit.	

•  After	all	queries	are	made,	the	adversary	outputs	its	estimate	b’	for	bit	b.	

•  The	adversary	wins	if	it	decides	correctly.	

	

	IND	=	Indistinguishable	

	CPA	=	Chosen	Plaintext	Attack	

41	

IND-CPA	security	in	a	picture	

Adversary	 Challenger	

b	←	{0,1}	

(m0,m1)	

c	=	EncK(mb)	c	

b'	
Adversary	wins	if	b	=	b’	

K	←	KGen	

42	

IND-CPA	security	

The	adversary’s	advantage	in	the	IND-CPA	security	game	is	
defined	to	be:	

|Pr(b=b’)	-	1/2|.	

•  We	have	“-1/2”	here	because	a	dumb	adversary	can	always	
guess.	

•  A	scheme	SE	is	said	to	be	IND-CPA	secure	if	the	advantage	is	
“small”	for	any	adversary	using	“reasonable”	resources.	

•  More	useful:	quantify	security	of	any	scheme	in	terms	of	
resources	consumed	by	adversary	and	any	assumptions	on	
underlying	components,	e.g.	a	block	cipher.	

•  Number	of	queries	to	encryption	oracle,	q,	number	of	bits	queried	
across	all	queries,	running	time.		

43	

IND-CPA	security	+	stateless,	deterministic	encryption	

Adversary	 Challenger	

b	←	{0,1}	

(m0,m1)	

c	=	EncK(mb)	c	

b’	=	0	if	c	=c’;	else	b’	=	1	

K	←	KGen	

(m0,m0)	

c’	

Conclusion:	Enc	cannot	be	both	stateless	and	deterministic	

c'	=	EncK(mb)	

44	

IND-CPA	security	

Informally,	IND-CPA	security	is	a	computational	version	of	perfect	
security.	

•  Ciphertext	leaks	nothing	about	the	plaintext	to	a	computationally-bounded	
adversary	because	adversary	can’t	tell	if	left	or	right	messages	were	
encrypted.	

•  Stronger	notion	than	requiring	the	adversary	to	recover	plaintext.	

	

[BDJR97]	developed	a	variety	of	equivalent	notions.	
•  RoR-CPA,	FtG-CPA	and	SEM-CPA.	

IND$-CPA:		even	stronger	notion	than	IND-CPA:	adversary	has	
encryption	oracle	and	gets	back			either	real	encryption	or	random	bits.	

45	

IND$-CPA	security	in	a	picture	

Adversary	 Challenger	

b	←	{0,1}	

m	

c	=	EncK(m);	
if	b=1,		
		c		←$	{0,1}|c|	

c	

b'	
Adversary	wins	if	b	=	b’	

K	←	KGen	

46	

IND$-CPA	security	of	CTR	mode	(informal)	

…		EK	

⊕	P1	 C1	

ctr1	

EK	

⊕	P0	 C0	

ctr0	

EK	

⊕	P2	 C2	

ctr2	

mask0	 mask1	 mask2	

b	=	0	

•  Picture	shows	part	of	encryption	of	just	one	message	m	=	P0P1	…	Pt-1	
	

47	

IND$-CPA	security	of	CTR	mode	(informal)	

…		

⊕	P1	 C1	

ctr1	

π	

⊕	P0	 C0	

ctr0	

⊕	P2	 C2	

ctr2	

mask0	 mask1	 mask2	

Switch	to	random	perm	

•  Indistinguishable	to	adversary	by	PRP	security	of	E.	

π	 π	

48	

IND$-CPA	security	of	CTR	mode	(informal)	

…		

⊕	P1	 C1	

ctr1	

F	

⊕	P0	 C0	

ctr0	

⊕	P2	 C2	

ctr2	

mask0	 mask1	 mask2	

Switch	to	random	function	

•  Indistinguishable	to	adversary	by	PRP/PRF	switching	lemma.	

F	 F	

49	

IND$-CPA	security	of	CTR	mode	(informal)	

⊕	P1	 C1	⊕	P0	 C0	 ⊕	P2	 C2	

mask0	 mask1	 mask2	

Switch	to	random	outputs	

•  Indistinguishable	to	adversary	assuming	counter	values	are	all	distinct.	
•  This	is	now	just	one-time	pad	encryption!	

maski	←$	{0,1}n	for	each	i	

50	

IND$-CPA	security	of	CTR	mode	(informal)	

C1	C0	 C2	

Switch	to	random	ciphertext	blocks	

•  Same	distribution	of	ciphertexts	by	information	theoretic	security	of	OTP.		
•  This	is	now	the	b	=	1	version	of	the	IND$-CPA	game.		

Ci	←$	{0,1}n	for	each	i	

51	

IND$-CPA	security	of	CTR	mode	(informal)	

•  We	started	with	the	b	=	0	game	and	moved	one	step	at	a	time	to	the		
b	=	1	game.	

•  At	each	step,	we	informally	argued	why	an	adversary	cannot	tell	the	
difference	when	a	small	change	was	introduced.	

•  The	steps	rely	on	the	PRP	security	of	E	and	the	PRP/PRF	switching	
lemma.	

•  More	careful	accounting	will	give	a	concrete	bound	on	any	IND-CPA	
adversary’s	advantage:	

•  One	term	for	advantage	of	the	best	adversary	against	PRP	security	of	E.	

•  A	second	term	of	the	form	q2/2n	where	q	is	the	total	number	of	blocks	
involved	in	encryption	queries.		

An	attack	on	CBC	mode	

53	

Attacking	Linux	implementation	of	ESP	mode	IPsec	

[Paterson-Yau,	2006]:	

•  Three	different	(but	related)	attacks	on	Linux	kernel	
implementation	of	encryption-only	ESP	in	tunnel	mode.	

•  Here,	an	entire	IP	packet	is	encrypted	using	CBC	mode	and	ciphertext	
forms	payload	of	a	new	IP	packet.	

•  Attacks	exploit	bit	flipping	in	CBC	mode.	

•  Bit	flipping	results	in	error	messages	and	packet	re-direction.	

•  Error	messages	are	carried	by	ICMP	protocol	and	reveal	(some)	
plaintext	data.	

•  Packet	redirection	can	send	inner	packet	to	attacker’s machine.	

	

	

	
	

7	0	 16	 31	3	4	 15	8	

Version	 IHL	 Type	of	Service	 Total	Length	

Fragmentation	Fields	

Protocol	 Header	Checksum	

Source	Address	

Destination	Address	

Time	to	Live	

Options	(optional)	

32	bits	

5	x	32-bit		
words	

Up	to	
10	

words	

54	

IP	header	format	

	
	

Version	 IHL	 Type	of	Service	 Total	Length	

Fragmentation	Fields	

Protocol	 Header	Checksum	

Source	Address	

Destination	Address	

Time	to	Live	

Options	(optional,	up	to	10	words)	

Protocol	field	(8	bits):		
• 	Indicates	upper	layer	protocol	in	IP	payload.	
• 	Possible	values	are	dependent	on	IP	implementation	and	protocols	it	supports.	
• 	Typical	values:	0x01	for	ICMP,	0x06	for	TCP,	0x17	for	UDP.	

55	

IP	header	format	

	
	

Version	 IHL	 Type	of	Service	 Total	Length	

Fragmentation	Fields	

Protocol	 Header	Checksum	

Source	Address	

Destination	Address	

Time	to	Live	

Options	(optional,	up	to	10	words)	

Header	checksum	(16	bits):	
• 	1’s	complement	sum	of	16	bit	words	in	header	(inc.	any	options).	
• 	Incorrect	checksum	leads	to	datagram	being	silently	dropped.	
• 	Provides	error	detection	for	IP	headers.		

56	

IP	header	format	

	
	

Version	 IHL	 Type	of	Service	 Total	Length	

Fragmentation	Fields	

Protocol	 Header	Checksum	

Source	Address	

Destination	Address	

Time	to	Live	

Options	(optional,	up	to	10	words)	

Source	Address	(32	bits):		
• 	Contains	the	IP	address	of	the	host	originating	the	datagram.	
• 	Needed	so	any	replies	or	error	messages	can	be	delivered	back	to	
source.	57	

IP	header	format	

Csum PF

58	

C1 C2

dK dK

C3

dK

IV

Payload

Dest addr

Src addr

Payload

Flip bits here

To change
protocol field
and source

address here
Correction of

checksum via further
bit flips in IV

Outer packet payload = AES CBC encryption of inner packet

Example	attack:	protocol	field	manipulation	

Plaintext = inner IP packet

59	

Attack	visualisation	

Intercept,	
bit-flip	in	
IV	and	re-
inject	

Header Payload

Inner IP packet

Outer
Header

Header Payload

Inner IP packet

Security
Gateway

Security
Gateway

Header Payload

Inner IP packet

Outer
Header

Header Payload

60	

Attack	visualisation	

Intercept	
and	

extract	
plaintext!	

Security
Gateway

Header Payload

Header Part Payload ICMP	

Header Part Payload ICMP	

Protocol	field	is		
unsupported,	generates		
ICMP	error	message	

Destination	addr	=	source	addr		
from	original	IP	packet	

Pass	through	gateway,		
since	dest	addr	outside	tunnel	

61	

The	attack	in	words	

•  Attacker	intercepts	packet,	does	bit	flipping	needed	to	
manipulate	protocol	field	and	source	address,	and	to	correct	
checksum.	

•  Attacker	than	injects	modified	datagram	into	network.	

•  Inner	packet	decrypted	by	gateway	and	forwarded	to	end-
host.	

•  End-host	generates	ICMP	“protocol	unreachable”	message	in	
response	to	modified	protocol	field	in	header.	

62	

The	attack	in	words	

•  ICMP	payload	carries	inner	packet	header	and	528	bytes	of	
inner	packet’s	payload.	

•  Payload	now	in	plaintext	form!	

•  ICMP	message	is	sent	to	host	indicated	in	source	address	

•  And	we	have	modified	this	address	so	that	ICMP	message	does	not	
pass	through	IPsec	tunnel.	

•  Attacker	intercepts	ICMP	message	to	get	plaintext	bytes.	

•  These	ideas	were	used	in	[PY06]	to	build	an	attack	client	that	
can	efficiently	extract	all	plaintext	from	an	IPsec	encryption-
only	tunnel.	

Integrity	notions	for	symmetric	encryption	

64	

Motivating	stronger	security	

In	CBC	and	CTR	modes,	we’ve	seen	how	an	active	adversary	can	
manipulate	ciphertexts	and	learn	information	from	how	these	are	
decrypted.	

•  For	CTR	mode,	bit	flipping	in	plaintext	is	trivial	by	performing	bit	
flipping	in	the	ciphertext.	

•  Modify	c	to	c	XOR	Δ	to	change	the	underlying	plaintext	from	p	to	p	XOR	
Δ	.	

•  CBC	mode:	see	IPsec	attack.	

•  Or	create	completely	new	ciphertexts	from	scratch?	

•  A	random	string	of	bits	of	the	right	length	is	a	valid	ciphertext	
for	some	plaintext	for	both	CBC	and	CTR	modes!	

65	

Motivating	stronger	security	

•  These	kinds	of	attack	do	not	break	IND-CPA	security,	but	are	
clearly	undesirable	if	we	want	to	build	secure	channels.	

•  A	modified	plaintext	may	result	in	wrong	message	being	delivered	
to	an	application,	or	unpredictable	behaviour	at	the	receiving	
application.	

•  We	really	want	some	kind	of	non-malleable	encryption,	
guaranteeing	integrity	as	well	as	confidentiality.	

•  Two	basic	security	notions:	integrity	of	plaintexts	and	
integrity	of	ciphertexts.	

66	

Integrity	of	ciphertexts	–	INT-CTXT	

•  Attacker	has	repeated	access	to	an	encryption	oracle	and	a	“Try”	oracle.	

•  Encryption	oracle	takes	any	m	as	input,	and	outputs	EncK(m).	

•  Try	oracle	takes	any	c*	as	input	(and	has	no	output).	

•  Adversary’s	task	is	to	submit	c*	to	its	Try	oracle	such	that:	

1.  	c*	is	distinct	from	all	the	ciphertexts	c	output	by	the	encryption	oracle;	and	

2.  DecK(c*)	decrypts	to	message	m*	≠	┴.	

•  Hence	adversary	wins	if	it	can	create	a	“ciphertext	forgery”	–	a	new	
ciphertext	that	it	did	not	get	from	its	encryption	oracle.	

•  NB:	we	do	not	insist	that	m*	be	different	from	all	the	m	queried	to	the	
encryption	oracle,	only	that	c*	be	different	from	all	the	outputs	of	that	
oracle.	

67	

INT-CTXT	security	in	a	picture	

Adversary	 Challenger	

m	

c	=	EncK(m)	c	

Adversary	wins	if	c*	is	
“new”	and	m*	≠	┴		

K	←	KGen	

Try(c*)	
m*	=	DecK(c*)	

68	

INT-CTXT	security	

•  A	symmetric	encryption	scheme	is	said	to	provide	INT-CTXT	
security	if	the	success	probability	of	any	efficient	adversary	
using	reasonable	resources	is	small.	

•  Again,	this	can	be	made	concrete.	

•  INT-PTXT:	same	as	INT-CTXT,	but	now	adversary	needs	to	
come	up	with	a	ciphertext	c*	that	encrypts	a	message	m*	such	
that	m*	was	never	queried	to	the	encryption	oracle.	

•  Informally,	INT-PTXT	security	means	that	the	adversary	can’t	
force	a	new	plaintext	to	be	accepted	by	the	receiver.	

•  If	a	scheme	is	INT-CTXT	secure,	then	it	is	also	INT-PTXT	
secure.	

69	

INT-PTXT	security	in	a	picture	

Adversary	 Challenger	

m	

c	=	EncK(m)	c	

Adversary	wins	if	m*	is	
“new”	and	m*	≠	┴		

K	←	KGen	

Try(c*)	
m*	=	DecK(c*)	

70	

Achieving	INT-CTXT	and	INT-PTXT	security	

•  INT-CTXT	and	INT-PTXT	security	can	be	achieved	by	carefully	
combining	modes	(e.g.	CTR,	CBC)	with	Message	
Authentication	Codes	(MACs).	

•  More	on	this	soon!	

Authenticated	Encryption	Security	

A	symmetric	encryption	scheme	is	said	to	offer	Authenticated	Encryption	
security	if:	
	

A	chosen	plaintext	attacker	can	learn	nothing	about	plaintexts	from	
ciphertexts	except	their	lengths.	

AND		
An	attacker	with	access	to	an	encryption	oracle	cannot	forge	any	new	

ciphertexts.	
	

72	

AE	Security	

More	formally:	

AE	=	IND-CPA	+	INT-CTXT	

73	

But	what	about	chosen	ciphertext	attacks?	

•  We	are	also	interested	in	security	against	chosen	ciphertext	
attacks.	

•  This	attack	model	may	actually	arise	in	practice.	

•  Or	the	attacker	may	have	an	approximation	to	a	decryption	
oracle.	

•  An	attacker	might	not	be	able	to	learn	the	full	plaintext,	but	could	get	
partial	information	about	the	decryption	process,	for	example,	error	
messages,	timing	information,	etc.	

•  cf.	padding	oracle	attacks,	the	ICMP	attack	on	IPsec,	etc.	

74	

Chosen	ciphertext	attacks	

•  IND-CCA	security:	

•  Attacker	now	has	repeated	access	to	LoR	encryption	oracle	and	to	a	
decryption	oracle.	

•  LoR	encryption	oracle	as	before.	

•  Decryption	oracle	takes	any	c	as	input,	and	outputs	DecK(c),	which	is	

either	a	message	m	or	a	failure	symbol	┴.	
•  Adversary	not	permitted	to	submit	output	of	LoR	encryption	oracle	

to	its	decryption	oracle.		

•  (To	prevent	trivial	win).	

•  All	basic	modes	of	operation	are	insecure	in	this	model!	

•  Why?	

75	

IND-CCA	security	in	a	picture	

Adversary	 Challenger	

b	←	{0,1}	

(m0,m1)	

c	=	EncK(mb)	c	

b'	
Adversary	wins	if	b	=	b’	

K	←	KGen	

c’	

m	 m	=	DecK(c’)	

c’	not	permitted	to	be	an		
output		of	the	encryption	oracle	

76	

AE	security	implies	IND-CCA	security	

Informal	reasoning:	

•  Suppose	we	have	a	successful	IND-CCA	adversary	against	an	AE-secure	
scheme.	

•  Its	decryption	oracle	is	only	any	use	to	it	if	it	can	come	up	with	a	new	and	
valid	ciphertext	c*	not	output	by	the	encryption	oracle.	

•  But	if	it	can	come	up	with	a	new	ciphertext	c*,	then	it	has	broken	INT-CTXT	
security!	

•  So	we	can	assume	the	adversary	never	comes	up	with	a	valid		c*.	

•  This	means	we	can	always	reply	with	“┴”	to	any	decryption	query.	

•  This	means	the	IND-CCA	adversary	is	effectively	reduced	to	being	an	IND-
CPA	one.	

•  But	this	contradicts	AE	security,	since	AE	security	implies	IND-CPA	security.	

77	

Relations	between	security	notions	for	symmetric	
encryption	

AE:		
	IND-CPA							
+	INT-CTXT	

IND-CCA	 IND-CPA		
+	INT-PTXT	

IND-CPA	 INT-PTXT	

78	

AE	security	and	beyond	

•  Because	AE	security	implies	IND-CCA	security	and	INT-PTXT	
security,	AE	security	has	emerged	as	the	natural	target	security	
notion	for	symmetric	encryption.	

•  However	it’s	not	the	end	of	the	story…	

•  In	many	applications	we	want	to	integrity	protect	some	data	and	
provide	confidentiality	for	the	remainder	–	AE	with	Associated	Data,	
AEAD.	

•  AE	security	does	not	protect	against	attacks	on	secure	channels	
based	on	reordering	or	deletion	of	ciphertexts.	

•  The	“AE	implies	IND-CCA”	proof	only	works	if	there	is	a	single	
possible	error	message.	

•  See	[BDPS13]	for	development	of	models	and	relations	in	this	
setting	(which	is	important	for	practice).		

	

79	

Towards	AE	security:	MACs	

•  We	will	use	MACs	to	achieve	AE	security.	

•  MACs	provide	authenticity/integrity	protection	for	messages.	

•  Symmetric	analogue	of	a	digital	signature.	

•  Syntax:	MAC	=	(KGen,Tag,Verify).	

•  KGen	outputs	key	K.	

•  Tag	has	as	input	a	key	K,	a	message	m	of	arbitrary	length,	and	outputs	a	
short	MAC	tag	τ.	

•  Verify	has	as	input	a	key	K,	a	message	m,	a	MAC	tag	τ	and	outputs	0	or	
1,	indicating	correctness	of	tag	τ	for	m	under	K.	

80	

MACs	

•  Key	security	requirement	is	
unforgeability.	

•  Having	seen	MAC	tags	for	many	
chosen	messages,	an	adversary	
cannot	create	the	correct	MAC	tag	
for	another	chosen	message.	

•  Strong	and	weak	forms	of	
unforgeability:	
•  New	MAC	tag	on	(possibly)	

queried	message	versus	MAC	
tag	on	unqueried	message.	

•  SUF-CMA	and	(W)UF-CMA	
security.	

MAC tag

Tag

m

K

0/1

Verify

m

K

MAC tag

81	

Example:	HMAC	

HMAC	is	a	general	purpose	method	for	building	a	MAC	from	a	
compression	function	h:	{0,1}k	x	{0,1}n		-->	{0,1}n.	

	

	

	

	

	

	

	

Tag(K,m)	=	H((K⊕	opad)	||	H((K⊕	ipad)	||	m))	

	

	

Generic	composition	

Generic	composition	for	AE	

•  We	have	IND-CPA	secure	encryption	schemes	(e.g.	CBC	
mode,	CTR	mode)	and	we	have	SUF-CMA	secure	MAC	
schemes	(e.g.	HMAC).	

•  Can	we	combine	these	to	obtain	AE	security	for	symmetric	
encryption?	

•  Generic	options:	E&M,	MtE,	EtM.		

•  (In	what	follows,	KM	denotes	a	MAC	key,	and	KE	an	
encryption	key.)	

	

83	

Generic	composition	for	AE	

Encrypt-and-MAC	(E&M)		

•  compute	c’	←	EncKE(m)	and	τ	←	TagKM(m)	and	output	c	=	(c’||τ).	

•  variant	used	in	SSH		

MAC-then-Encrypt	(MtE)		

•  compute	τ	←	TagKM(m)	and	output	c	=	EncKE	(m	||	τ).	

•  used	in	TLS		

Encrypt-then-MAC	(EtM)		

•  	compute	c’	←	EncKE	(m)	and	τ		←	TagKM(c’)	and	output	c	=		(c’||τ).	

•  used	in	IPsec	ESP	“enc	+	auth”	
84	

Security	of	generic	composition	for	AE:	EtM	

•  Generic	options:	E&M,	MtE,	EtM.	

•  EtM	gives	AE	security.	

•  Assuming	encryption	is	IND-CPA	secure	and	MAC	is	SUF-CMA	secure.	

•  Intuition:	MACing	the	ciphertext	c’	provides	ciphertext	integrity;	IND-
CPA	security	of	encryption	carries	over	to	the	composition.	

•  Plus	point:	check	MAC	on	ciphertext,	don’t	even	decrypt	if	it	fails;	no	
temptation	for	programmer	to	“use	the	plaintext	anyway”	if	MAC	fails.	

85	

Security	of	generic	composition	for	AE:	E&M	

To	see	why	E&M	fails	to	be	secure	in	general:		

•  Suppose	we	have	a	SUF-CMA	secure	MAC	scheme,	with	tagging	
algorithm	TagKM	(.).			

•  Think	about	the	MAC	scheme	which	outputs	TagKM	(m)	||	m0	where	m0	is	
the	first	bit	of	m.	

•  Is	it	SUF-CMA	secure?	

•  What	about	the	security	of	the	resulting	E&M	scheme?	

•  Artificial	MAC,	but	consider	also	natural	case	when	MAC	is	a	PRF.	

•  Consider	pair	of	Enc	queries	(m0,m0)	and	(m0,m1).	

•  If	MAC	tag	remains	the	same,	then	m0	was	encrypted,	so	guess	b=0.	

86	

Security	of	generic	composition	for	AE:	MtE	

To	see	why	MtE	can	fail	to	be	secure	is	more	subtle.	

	

Example	

Consider	the	MtE	encryption	scheme	in	which	MAC	is	provided	by	
HMAC	and	the	encryption	scheme	is	provided	by	CBC-mode	
using	simplified	TLS	padding.	

Good	MAC	(SUF-CMA)	and	good	encryption	scheme	(IND-CPA)!	

•  KGen:	select	at	random	two	keys,	KM,	KE.		

•  Encryption:	c	=	CBC-EncKE	(TLS-PAD(m	||	TagKM(m))).	
•  TLS-PAD:	add	“00”,	or	“01	01”,	or	“02	02	02”,	etc.	

•  Decryption:	???	
87	

Security	of	MtE	generic	composition	for	AE	

•  Encryption:	c	=	CBC-EncKE	(TLS-PAD(m	||	TagKM(m))).	

•  Decryption:		
1.  Perform	CBC-mode	decryption.	

2.  Perform	depadding		–		possibility	of	padding	error.	

3.  Perform	MAC	verification	–	possibility	of	MAC	verification	error.	

If	the	errors	at	steps	2	and	3	are	distinguishable,	then	we	can	carry	out	a	
padding	oracle	attack	and	recover	the	plaintext!	

•  Padding	error	-->	padding	bad.	

•  MAC	verification	error	-->	padding	good.	

This	attack	is	a	special	case	of	a	chosen-ciphertext	attack,	which	should	be	
prevented	by	AE	security	(and	recall	AE	security	implies	IND-CCA	security).	

88	

Security	of	MtE	generic	composition	for	AE	

•  We’ve	just	seen	an	example	of	a	scheme	constructed	from	
components	that	are	both	good	(IND-CPA	secure	encryption	
scheme,	SUF-CMA	secure	MAC)	but		for	which	the	MtE	
composition	fails	to	be	secure.	

•  The	example	is	closely	related	to	the	construction	that	is	used	
in	TLS…	

•  Specific	ways	of	instantiating	MtE	can	be	made	secure,	but	
it’s	unsafe	in	general	and	should	be	avoided	wherever	
possible.	

89	

AEAD	

91	

Authenticated	Encryption	with	Associated	Data	(AEAD)	

In	practical	applications,	we	often	require	confidentiality	and	integrity	for	some	
data	fields	and	only	integrity	for	others.	

Example:	ESP	in	transport	and	tunnel	modes	in	IPsec	

Inner	

IP	header	

Tunnel	mode:	

Outer	

IP	header	

Payload		

(e.g.	TCP,	UDP,	ICMP)	

ESP	

trlr	

ESP	hdr	
SPI,	seq#	

MAC	scope	

Encryption	scope	

Payload		

(e.g.	TCP,	UDP,	ICMP)	
ESP	hdr	
SPI,	seq#	

Transport	mode:	

Original	

IP	header	
ESP	

trlr	

ESP	

auth	

Encryption	scope	

MAC	scope	

ESP	

auth	

92	

Authenticated	Encryption	with	Associated	Data	(AEAD)	

An	AEAD	scheme	consists	of	a	triple	of	algorithms:	(KGen,Enc,Dec).	

KGen:	key	generation,	selects	a	key	K	uniformly	at	random	from	{0,1}k.	

Enc:	encryption,	takes	as	input	key	K,	associated	data	AD	∈	{0,	1}∗,	plaintext	
	m	∈	{0,	1}∗,	and	produces	output	c∈	{0,	1}∗.	

Dec:	decryption,	takes	as	input	key	K,	associated	data	AD	∈	{0,	1}∗,	
	ciphertext	c	∈	{0,	1}∗,	and	produces	output	m	∈	{0,	1}∗	or	an	error	
	message,	denoted	┴.	

Correctness:	we	require	that	for	all	keys	K,	for	all	associated	data	strings	AD,	
and	for	all	plaintexts	m:	

DecK(AD,EncK(AD,m))	=	m.	

AEAD	security	(informal):	
	IND-CPA	security	for	messages	m,		

integrity	for	combination	of	associated	data	AD	and	ciphertext	c.		

	

Nonce-based	AEAD	

Nonce-based	AEAD	

Nonce-based	AEAD	=	AEAD	with	nonces!	

Nonce	=	Number	used	once.	

Motivation:		

•  AEAD	schemes	as	we	have	described	them	so	far	must	consume	
randomness	in	Enc	algorithm	to	achieve	AE	security	(IND-CPA	security	
requires	randomised	encyption).	

•  Guaranteeing	good	sources	of	randomness	is	hard.	

•  It	may	be	dangerous	to	hand	this	responsibility	to	the	programmer,	by	
asking	him/her	to	supply	the	required	randomness	(e.g.	IV	for	CBC	mode).	

•  It	is	arguably	easier	to	ensure	that	the	programmer	always	passes	a	new	
nonce	value	as	one	of	the	inputs	to	the	Enc	algorithm	(along	with	message	
m	and	associated	data	AD).	

94	

95	

Nonce-based	AEAD	

A	nonce-based	AEAD	scheme	consists	of	a	triple	of	algorithms:	
(KGen,Enc,Dec).	

	

KGen:	key	generation,	selects	a	key	K	uniformly	at	random	from	{0,1}k.	

Enc:	encryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	 	
	AD	∈	{0,	1}∗,	plaintext	m	∈	{0,	1}∗,	and	produces	output	c∈	{0,	1}∗.	

Dec:	decryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	 	
	AD	∈	{0,	1}∗,	ciphertext	c	∈	{0,	1}∗,	and	produces	output	m	∈	{0,	1}∗	or	
	an	error	message,	denoted	┴.	

	

Correctness:	we	require	that	for	all	keys	K,	for	all	nonces	N,	for	all	associated	
data	strings	AD,	and	for	all	plaintexts	m:	

DecK(N,AD,EncK(N,AD,m))	=	m.	

	

96	

Security	for	nonce-based	AEAD	

Nonce-based	AEAD	security	(informal):	

	IND-CPA	security	for	messages	m,	integrity	for	combination	of	
	associated	data	AD	and	ciphertext	c,	for	adversaries	that	never	repeat	the	

nonce	in	their	encryption	queries.	

	

In	the	IND-CPA	security	game,	the	adversary	now	gets	to	specify	a	pair	(m0,m1),	
along	with	AD	and	N	in	encryption	queries.		

•  Adversary	never	repeats	N.	

In	the	INT-CTXT	game,	adversary	now	gets	to	specify	m,	AD	and	N	in	
encryption	queries.		

•  Adversary	never	repeats	N.	

	

	

97	

Using	nonce-based	AEAD	

Enc:	encryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	AD	∈	{0,	
1}∗,	plaintext	m	∈	{0,	1}∗,	and	produces	output	c∈	{0,	1}∗.	
Dec:	decryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	AD	∈	{0,	
1}∗,	ciphertext	c	∈	{0,	1}∗,	and	produces	output	m	∈	{0,	1}∗	or	an	error	message,	
denoted	┴.	
	
Notes:	
•  For	decryption	to	“undo”	encryption,	the	same	value	of	the	associated	data	AD	

needs	to	be	used.	
•  But	the	ciphertext	c	does	not	“contain”	AD.	
•  In	applications,	AD	may	need	to	be	sent	along	with	c,	or	be	reconstructed	at	the	

receiver.	
•  For	decryption	to	“undo”	encryption,	the	same	nonce	value	N	needs	to	be	used.	
•  Again,	N	is	not	included	in	the	ciphertext	c.	
•  In	applications,	then,	sender	and	receiver	typically	maintain	a	synchronized	

counter	to	ensure	they	both	use	the	same	N	when	encrypting	and	decrypting.	

98	

Using	nonce-based	AEAD	

•  A	sends	B	a	sequence	of	messages	m0,	m1,	m2,…	using	nonce-based	AEAD.	

•  A	uses	an	incrementing	counter	for	the	nonces;	B	uses	the	same	nonce	
values	when	decrypting.	

•  Nonces/counters	can	be	implicit	or	explicit	on	secure	channel.	

c0	=	EncK(N=0,	AD0,	m0)	

c1	=	EncK(N=1,	AD1,	m1)	

c2	

c2	=	EncK(N=2,	AD2,	m2)	

c1	

c0	

m0	=	DecK(N=0,	AD0,	c0)	

m1	=	DecK(N=1,	AD1,	c1)	

m2	=	DecK(N=2,	AD2,	c2)	

Secure	channels	from	nonce-based	AEAD	

•  What	happens	if	the	adversary	deletes	a	ciphertext?	

•  What	happens	if	the	adversary	reorders	the	ciphertexts,	
delivering	c2	before	c1,	say?	

•  In	both	cases,	receiver	will	use	the	wrong	counter	during	
decryption,	so	decryption	will	fail,	producing	an	error	message.	

•  Adversary	learns	nothing,	and	so	can’t	arrange	undetectable	
deletion	or	force	a	message	to	be	delivered	“out	of	order”.		

•  This	gives	us	a	basic	secure	channel	functionality	for	atomic	
messages	from	nonce-based	AEAD.	

•  Security	captured	by	stateful	security	notions	for	SE,	
introduced	by	Bellare-Kohno-Namprempre.	

99	

Example	nonce-based	AEAD	schemes	

101	

Further	constructions	

So	far	we	have	only	seen	generic	constructions	for	AE	schemes.		

•  EtM	is	the	only	one	that	is	safe	to	use.	

•  EtM	extends	to	the	AEAD	setting:	

	 	c’	←EncKE(m);	τ	←TagKM(AD	||	c’)	and	c	=(c’	||	τ).		

•  But	this	is	only	secure	if	the	length	of	AD	is	fixed	or	otherwise	known	to	both	Enc	and	
Dec	algorithms.	

•  EtM	also	extends	to	the	nonce-based	setting	if		“E”	is	a	nonce-based	encryption	
scheme.	

•  Example:	CBC-mode	with	IV	=	EK(N)		-	use	key	to	derive	“random”	IV	block	from	nonce.	

•  Many	other	AEAD	schemes	are	available;	we	will	look	at	just	one,	GCM.	

GCM	(for	96-bit	nonces)	

102	

AD	

N	||	1031	

Encryption	
mask	for	
universal	
hash	

CTR	mode	
encryption	

Universal	hash	function	on		
AD	||	c	||	len(AD)64	||	len(c)64.	

GCM	

GCM	=	Galois	Counter	Mode.	

•  Basically,	an	instantiation	of	EtM	with	E	=	CTR	mode	using	a	128-bit	block	cipher,	
e.g.	AES,	and	M	=	a	Wegman-Carter	MAC.	

•  Nonces	N	can	be	of	arbitrary	length,	special	processing	for	96-bit	case	for	speed.	

•  GCM	only	uses		block	cipher	in	“forward	direction”,	i.e.	only	“E”	and	no	“D”.	

•  AD	and	m	can	be	processed	in	block-wise	fashion,	no	buffering	required.	

•  GCM	is	patent-free.	

•  GCM	is	standardised	for	use	in	IPsec	and	TLS	1.2,	now	widely	used	in	TLS.	

•  GCM	is	specified	in	full	in	NIST	Special	Publication	SP800-38D	(2007).	

•  GCM	has	a	security	proof	based	on	block	cipher	being	a	pseudo-random	
permutation.	

•  GCM	is	fragile:	can	fail	spectacularly	if	a	nonce	is	ever	repeated.	

	103	

AEAD	≠	secure	channel	

AEAD	≠	secure	channel	

•  Recall	our	application	developer:	
•  He	wants	a	drop-in	replacement	for	TCP	that’s	secure	

•  Actually,	he	might	just	want	to	send	and	receive	some	
atomic	messages	and	not	a	TCP-like	stream	

•  To	what	extent	does	AEAD	meet	this	requirement?	

•  It	doesn’t…	

105	

AEAD	≠	secure	channel	

There’s	a	significant	semantic	gap	between	AEAD’s	functionality	
and	raw	security	guarantees,	and	all	the	things	a	developer	might	
expect	a	secure	channel	to	provide.	

106	

m1	

m2	

Ch	Enc(.,.,.)	

Dec(.,.,.)	

+	

SSH	Binary	Packet	Protocol	

•  Packet	length	field	measures	the	size	of	the	packet	on	the	wire		
•  Encrypted	to	hide	the	true	length	of	SSH	packets	

•  Needs	random	IV	for	CBC-mode	to	prevent	chaining	attack	
•  Construction	with	random	IVs	was	proven	to	be	IND-sfCPA	and

	INT-sfCTXT	secure	(Bellare-Kohno-Namprempre,	2002)	
107	

CBC

PRF-MAC

Payload

Ciphertext MAC tag

Sequence
Number 4

Packet
Length 4

Pad
Len 1

Padding
 ≥4

Breaking	SSH	(Albrecht-Paterson-Watson,	2009)	

108	

IV Ci
*

P0
’

dK

•  The	receiver	will	treat	the	first	32	bits	of	the	calculated	plaintext	block	
as	the	packet	length	field	for	the	new	packet	

•  Here:	
	 	 	P0’	=	IV		⊕		dK(Ci*)	
where	IV	is	known	

Target	ciphertext		
block	from	stream	

Length	field		

Breaking	SSH	(Albrecht-Paterson-Watson,	2009)	

109	

IV Ci
*

P0
’

dK

R R

P2’

dK dK

P1’

	The	attacker	then	feeds	random	blocks	to	the	receiver	
–  One	block	at	a	time,	waiting	to	see	what	happens	at	the	server	

when	each	new	block	is	processed	
–  This	is	possible	because	SSH	runs	over	TCP	and	tries	to	do	online	

processing	of	incoming	blocks	

Breaking	SSH	(Albrecht-Paterson-Watson,	2009)	

110	

IV Ci
*

P0
’

dK

•  Once	enough	data	has	arrived,	the	receiver	will	receive	what	it	thinks	is	
the	MAC	tag	
–  The	MAC	check	will	fail	with	overwhelming	probability	
–  Consequently	the	connection	is	terminated	(with	an	error	message)	

•  How	much	data	is	“enough”	so	that	the	receiver	decides	to	check	the	
MAC?	

•  Answer:	whatever	is	specified	in	the	length	field	

R R

P2’

dK dK

P1’

MAC tag

Breaking	SSH	(Albrecht-Paterson-Watson,	2009)	

111	

IV Ci
*

P0
’

dK

Ci-1
* Ci

*

Pi
*

dK

•  Knowing	IV	and	32	bits	of	P0
’,	the	attacker	can	now	recover	

32	bits	of	the	target	plaintext	block:	
	 	 	Pi

*	=	Ci-1
*	⊕	dK(Ci

*)	=	Ci-1
*	⊕	IV	⊕	P0

’		

	

					(Real	attack	is	a	bit	more	complicated,	but	follows	this	idea.)	

SSH	lessons	

•  Model	used	for	security	proof	was	inadequate.	

•  It	assumed	length	known	and	atomic	processing	of	
ciphertexts	

•  But	fragmented	adversarial	delivery	over	TCP	is	possible	

•  Implementation	can’t	know	if	complete	ciphertext	has	
arrived	because	of	encrypted	length	field,	unless	it	
decrypts	first	block.	

•  That’s	not	in	any	of	the	AE/AEAD	security	models!	

•  This	modeling	gap	addressed	in	(Paterson-Watson,	2010)	
and	(Boldyreva-Degabriele-Paterson-Stam,	2012).	

112	

Second	example:	cookie	cutters	

Bhargavan,	Delignat-Lavaud,	Fournet,	Pironti,	Strub	2014:	cookie	
cutter	attack	on	“HTTP	over	SSL/TLS”	

•  Attacker	forces	part	of	the	HTTP	header	(e.g.,	cookie)	to	be	cut	
off	

•  Partial	message/header	arrives	and	might	be	misinterpreted	

113	

c=	Enc(Set-Cookie: SID=[AuthenticationToken]; secure)	
Ch	

Set-Cookie: SID=[AuthenticationToken] 	

Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation

The record layer fragments information blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved in the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced into
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records).

RFC	5246	TLS	v1.2	
114	

Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation

The record layer fragments information blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved in the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced into
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records).

RFC	5246	TLS	v1.2	
115	

Cookie	cutters	

•  So	SSL/TLS	can	(and	will)	fragment	when	sending.	

•  Compare	to	SSH	that	only	has	to	deal	with	fragments	
when	receiving.	

•  Both	protocols	provide	a	TCP-like	streaming	interface	to	
applications,	not	a	UDP-like	message-oriented	one.	

116	

Set-Cookie:
SID=[AuthToken];
secure	

Ch	
Set-
Cookie:
SID = …

Set-Cookie:
SID=[AuthToken]

2	TLS	records	

Cookie	cutters	

•  It’s	up	to	the	calling	application	to	deal	with	message	boundaries	if	it	
wants	to	use	SSL/TLS	for	atomic	message	delivery	

•  Cookie	cutter	attack	relies	on	a	buggy	browser	that	does	not	check	
for	correct	HTTP	message	termination	

•  This	happens	in	practice,	presumably	because	developers	do	not	
understand	the	interface	provided	by	SSL/TLS	

117	

Set-Cookie:
SID=[AuthToken];
secure	

Ch	
Set-
Cookie:
SID = …

Set-Cookie:
SID=[AuthToken]

From	AEAD	to	secure	channels	

From	AEAD	to		secure	channels	

•  SSL/TLS	is	not	alone	in	presenting	a	streaming	
interface	to	applications.	

•  Also	SSH	“tunnel	mode”,	QUIC.	

• What	security	can	we	hope	for	from	such	a	channel?	

•  Boldyreva-Degabriele-Paterson-	Stam	(2012)	already	
treated	the	case	where	the	receiver	handles	
fragmented	ciphertexts.	

•  In	Fischlin-Günther-Marson-Paterson	(2015),	we	
provide	a	systematic	study	of	the	case	where	both	
sender	and	receiver	may	fragment,	as	in	TLS	

119	

Streaming		secure	channels	(FGMP15)	

•  Defining	CCA	and	integrity	notions	in	the	full	
streaming	setting	is	non-trivial!	

•  Hard	part	is	to	define	when	adversary’s	decryption	queries	
deviate	from	sent	stream,	and	from	which	point	on	to	
suppress	decryption	oracle	outputs.	

• We	develop	streaming	analogues	of	IND-CPA,	IND-
CCA,	INT-PTXT	and	INT-CTXT.	

• We	recover	an	analogue	of	the	classic	relation:	

	 	 	IND-CPA	+	INT-CTXT	è	IND-CCA	

	
120	

Streaming		secure	channels	(FGMP15)	

121	

c1	Enc	
m	

seqno	

c2	 c3	

•  We	give	a	generic	construction	for	a	secure	streaming	channel	that	validates	
the	SSL/TLS	design	

•  The	construction	uses	AEAD	as	a	component	

•  Security	as	streaming	channel	follows	from	standard	AEAD	security	
properties	

Streaming		secure	channels	(FGMP15)	

122	

Enc	
m	

seqno	

<	2len-1	bits	len	 len	len	 2len-1	bits	 2len-1	bits	

AEAD	with	AD	=	seqno	 remaining	message	on	flush	

•  We	give	a	generic	construction	for	a	secure	streaming	channel	that	validates	
the	SSL/TLS	design	

•  The	construction	uses	AEAD	as	a	component	

•  Security	as	streaming	channel	follows	from	standard	AEAD	security	
properties	

Streaming		secure	channels	(FGMP15)	

123	

•  We	give	a	generic	construction	for	a	secure	streaming	channel	that	validates	
the	SSL/TLS	design	

•  The	construction	uses	AEAD	as	a	component	

•  Security	as	streaming	channel	follows	from	standard	AEAD	security	
properties	

Enc	
m	

seqno	

<	2len-1	bits	len	 len	len	 2len-1	bits	 2len-1	bits	

AEAD	with	AD	=	seqno	 remaining	message	on	flush	

Dec	

m	

seqno	

on	AEAD	failure	

Closing	remarks	

Closing	remarks	

• We’ve	seen	the	evolution	from	simple	security	models	
for	symmetric	encryption	to	more	sophisticated	
security	notions	for	secure	channels.	

•  The	cryptography	community	is	focussed	on	AEAD	as	
an	end	goal.	

•  AEAD	is	an	important	tool	but	not	the	same	thing	as	a	
secure	channel.	

•  Key	take-away:	it	can	be	profitable	to	think	top-down	
too	(from	API	to	crypto).	

125	

