Framework 00000 00 BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Integrated Access Control for Smart Buildings using Building Information Models

Ed Dawson Nimal Skandhakumar Jason Reid Farzad Salim

Institute for Future Environments Science and Engineering Faculty Queensland University of Technology

BIM-XACML

Implementation 0 000 0000000000

Introduction

- Smart buildings and security-sensitive critical infrastructures are operated using network connected electronic systems
- Our reliance on information networks to access and control both physical and information resources has increased
- An integrated approach for access control coupled with integrated facility management approaches is needed

BIM-Graph 0 0000 BIM-XACM

Implementation 0 000 0000000000

Introduction

- Current approaches to access control do not address the specific challenges and requirements of smart building environments
- Integrated approach to security across all aspects of facilities operation and management is necessary
- Integration of disparate systems through BIMs requires an overarching access control mechanism

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Security of critical infrastructure

- In the context of this research, the focus is mainly on "critical infrastructures with large facilities spanning across multiple buildings and complex spatial arrangements"
- Providing adequate security for the critical assets is a key responsibility of owners and operators of such infrastructures
- Access control is an important measure in ensuring security in these environments

BIM-XACML

Implementation 0 000 0000000000

Smart buildings

- In the context of this research, a smart buildings is "a building comprised of advanced and integrated systems for building automation, life safety, and telecommunication systems"
- Incorporate information technology into all aspects of facility management and operation
- Integration and dynamic operational decision making

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Smart buildings and critical infrastructure

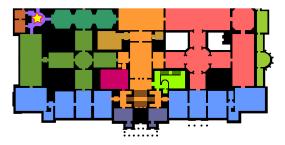
- The purpose of physical access control is protecting critical assets contained within protected areas
- However, with smart buildings, many of these assets can also be remotely controlled through networks
- Convergence of physical and logical security operations is key to ensure protection at both levels

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Access control and security challenges

- Large-scale infrastructures, multiple sites, several multi-storey buildings, multiple security zones
- Dependency on expert knowledge and decision making for access provision and revocation
- Difficult to comprehend three dimensional nature of the environment through two-dimensional floor plans


BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Access control and security challenges

An example scenario

Background

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Usability in Security Administration and Management

- Resource owners are the people with the best knowledge about their access control requirements
- It is often difficult for these resource owners to express their security needs in computer terms correctly
- Published research into the usability of physical access control administration tools is limited

d			

BIM-Gr 0 0000 BIM-XACML

Implementation 0 000 0000000000

Converged physical and logical access control

- Merges physical security and logical security operations
- Enable using two-way interaction between these two systems in decision-making
- Use information from work-flow and scheduling systems for configuration

BIM-Grapl 0 0000 BIM-XACML

Implementation 0 000 0000000000

Spatial data models

- Defines how spatial data are stored and represented
- Outdoor models and indoor models
- Provide vocabulary for representing location data

BIM-Grapl 0 0000 BIM-XACML

Implementation 0 000 0000000000

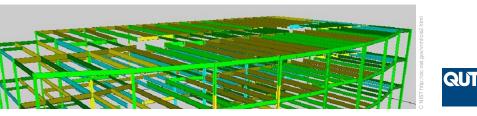
Building Information Modelling

- Centralised repositories of objects and processes within a building
- Designed initially and evolve throughout the lifecycle
- Used by designers, engineers and operators

00000

Complex Infrastructure and Building Information Modelling

- BIMs have the capability of integrating multi domain systems, and provide a common repository for all control systems
- Expected to become common practice in future smart buildings
- Government endorsements in Australia, Europe, and USA
- BIMs are seamless solutions as spatial data models for complex and critical infrastructures



BIM-Grapl 0 0000 BIM-XACML

Implementation 0 000 0000000000

Industry Foundation Classes

- Industry Foundation Classes (IFC) is an official International Standard ISO/IS 16739 for open BIM, registered with the International Standardization Organization
- IFC format is commonly used for BIMs in architectural, engineering, and construction industries
- IFC specification provides data types required for BIM classes, objects and relationships

BIM-Grapl 0 0000 BIM-XACML

Implementation 0 000 0000000000

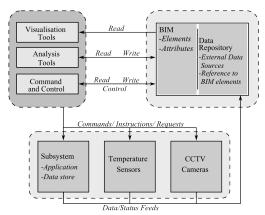
Why BIMs in IFC?

- City Geography Markup Language (CityGML) is an XML based storage and exchange format for virtual city models
- Both CityGML and IFC are semantic models that are targeted at different scales and scopes of spatial representations
- IFC based BIMs have been more widely adopted compared to CityGML, especially among the architecture, engineering, and construction industries and governments alike

Background	Framework	BIM-Graph	BIM-XACML	Implementation
000000	00000	0000	00	0 000 0000000000

Utilising building information models for access control

- Using BIM as spatial data model
- Utilising BIMs in three key stages of access control:
 - Policy specification
 - Policy administration
 - Decision making
- Convergence of access control



BIM-Grap 0 0000 BIM-XACML

Implementation 0 000 0000000000

Forms of BIM-based access control

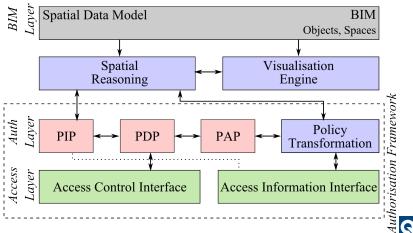
- Using a common framework to address different types of access control requirements
- Two proposed categories of resources: BIM internal content and BIM external resources

Framework

BIM-Graph 0 0000 BIM-XACML 00 000 Implementation 0 000 0000000000

Authorisation Framework

- Brings in knowledge and expertise from two significantly distinct domains of research and technology:
 - Building information modelling
 - Access control
- Functions as an overarching access control for BIM elements, internal resources and external resources



Background	
0000000	
00000	

BIM-Grap 0 0000 BIM-XACM

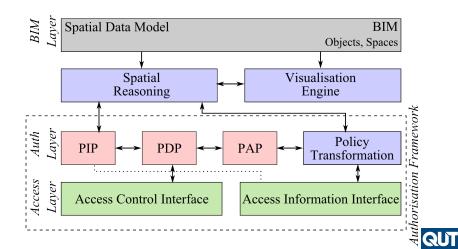
Implementation 0 000 0000000000

Authorisation Framework

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

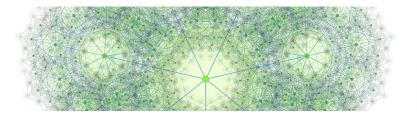
External spatial modules


- Components that interact with building information models directly
- Platform and implementation dependent for functionalities to manipulate BIMs
- Shared across different systems and not exclusively part of the authorisation framework

ckground	Framework	BIM-Graph	BIM-XACML	Implementation
00000	0000● ○○	0 0000	00 000	0 000 0000000000

Authorisation framework modules

Framework


BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Access control processes

This authorisation framework will utilise building information models in three key stages of access control:

- Policy specification creating access control policies
- Policy administration managing access control policies
- Decision making making access decisions within the framework and externally using the same policies

QUI

Framework

BIM-Graph 0 0000 BIM-XACML 00 000 Implementation 0 000 0000000000

Unified access control

Access control unification addresses two additional processes of the authorisation framework:

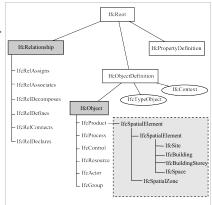
- Convergence For both physical and logical resources
- Policy transformations Supporting legacy systems

Framework 00000 00 BIM-Graph 00000 BIM-XACML

Implementation 0 000 0000000000

Understanding building information models

- The use of BIMs as spatial data models for any security applications including access control has not previously been established
- Thus, we identify the essential technical details of building information models that are part of the proposed authorisation framework

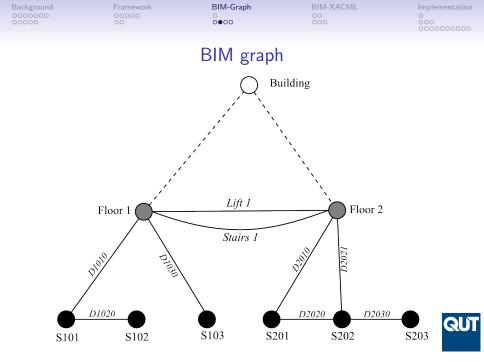

Framewor 00000 00 BIM-Graph

BIM-XACML

Implementation 0 000 0000000000

IFC for access control

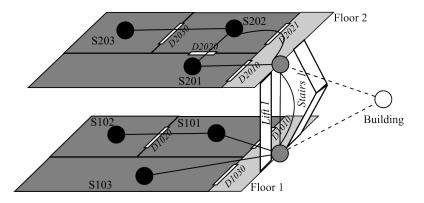
- Hundreds of entity types for objects and relationships
- Select group of entities key to representing access control scenarios
- Zones, property sets, adjacency of spaces, portals connecting spaces, and size of spaces



Implementation 0 000 0000000000

Graph modelling

- Lack of formal representation of BIMs to describe functions that manipulate BIM data
- Proposed graph theoretic model to formally describing BIMs and formally describing functions using BIMs
- Graph models are widely used in indoor and outdoor navigation applications


ckground Fra	mework
	000

BIM-XACML

Implementation 0 000 0000000000

Building a BIM graph

BIM-Graph ○ ○○●○

Framework 00000 00 BIM-Graph ○ ○○○● BIM-XACML

Implementation 0 000 0000000000

Access control functions using BIM graph

Algorithm 1 findpath (n_a, n_b, H)

- Formally defining various applications that use BIMs
- Different functions manipulating BIMs for access control processes

Algorithm 2 accessibility(user, nstart, nend) Input: user: An identifier for user/role, n_{start}: current location. nend: destination. Output: Pab/false Set accessibility = falsefor all $P_{ab} \in allPaths_{ab}$ do for all $n_i \in P_{ab}$ do if $canaccess(user, n_i)$ then Set accessibility = truecontinue else Set accessibility = falsebreak end if end for if accessibility = true then return Pah else Progress to next best path end if end for return false

Background
0000000
00000

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000000000

Representing spatial access control policies

- Using BIMs for authorisation creates unique possibilities and requirements
- Identify requirements for a policy model for such an access control system
- Propose BIM-XACML, a new policy language extension to XACML

Framework 00000 00 BIM-Grap 0 0000 BIM-XACML

Implementation 0 000 0000000000

Policy requirements for BIM access control

- There are two key requirements for a policy model for an access control system using building information models
- It must be possible to enforce access control restrictions based on object relationships
- The policy model should enable access restrictions based on spatial relationships

Framework 00000 00 BIM-Grap 0 0000 BIM-XACML

Implementation 0 000 0000000000

Policy structure for BIM access control

- This policy model performs rule-based access control
- The access control policy set comprises multiple access control policy rules, which are the basic building block for declaring and enforcing access restrictions
- Each policy rule consists of four elements: Subject, Object, Action, and Condition, the evaluation of which results in a Permit or Deny decision

$$\mathcal{AR} = \{S, O, A, C\} \to \{Permit, Deny\}$$

BIM-XACML

Implementation 0 000 0000000000

BIM-XACML

- Using the extension points available in XACML
- Similar to the GeoXACML for GIS
- Combines the XACML architecture and proposed framework

```
<Condition>

<Function FunctionId="http://localhost/bim/ifc2x3/

function#IfcRelDecomposes"/>

<AttributeValue DataType="http://www.iai-tech.org/

ifcXML/IFC2x3/FINAL#IfcSpace">

<IfcSpace id="bu1sp4">

<GlobalId>7qXakT6cDAD2uccYUIFcs$4</GlobalId>

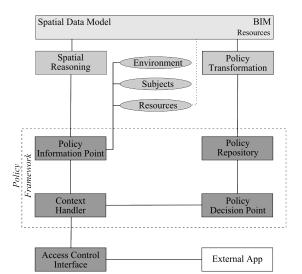
<Name>Management Area</Name>

</IfcSpace>

</AttributeValue>

</Condition>
```

Listing 1: XACML Encoding for a condition with IFC relationship



Framewor 00000 00 BIM-Grap 0 0000 BIM-XACML

Implementation 0 000 0000000000

BIM-XACML

Policy framework

1			

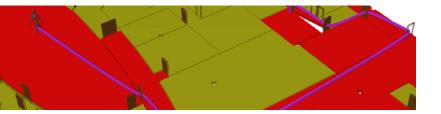
BIM-Grap 0 0000 BIM-XACML

Implementation 0 000 0000000000

QUI

BIM-XACML Extension to XACML

- The major additions to XACML are the introduction of new data types and functions to support access control using building information models
- The newly introduced data types and functions will have IFC-specific URIs that can be matched in the Policy Decision Point and Context Handler
- The information on IFC matched attributes can be inferred using the spatial reasoning module through the policy information point


Background	
0000000	
00000	

BIM-Graph 0 0000 BIM-XACML

QUT

Managing physical access control systems

- Proof-of-concept demonstrator to showcase the viability of proposed concepts
- To facilitate security administration for a physical access control system
- Address problems identified through interactions with industry partners of the Airports of the Future project

BIM-Graph 0 0000 BIM-XACML

Implementation Goals

- 1. Reduce physical access control configuration errors
- 2. Manage physical access control policies with less workload
- 3. Perform user friendly analysis on past access history

BIM-Graph 0 0000 BIM-XACML

BIM Access Control Functions

- We used a BIM based on Brisbane Airport International Terminal
- Contained Levels 3 and 4 of the building, with 11360 elements
- Consisted of 389 IfcDoor objects and 349 IfcSpace objects
- We implemented functions that map to the spatial reasoning module of our authorisation framework

Background
0000000
00000

BIM-Graph 0 0000 BIM-XACML

BIM Access Control Functions

Path finding

	🔲 Properties 🛛		E 🐉 🛱		
	Property	Value			
	End Point	Space 3L.18	🔚 Space 3L.18		
	Goal	🖷 MinimalDista			
	Maximum Security Level 510				
	Name	Second Floc			
	Require CCTV	₩true	l≪ true		
	Restrict To Roles	Role Temporary Technician			
	Restrict To Users	🌡 User Bob	🔓 User Bob		
	Start Point	Space 3A.42	IIII Space 3A.42		
	Valid From	🖙 Fri Nov 01 0	ा Fri Nov 01 00:00:00 PDT 2013		
	Valid To	E Sun Dec 01 00:00:00 PST 2013			
L	(1. 2				
Time (in Seconds)		3 nodes	5 nodes	10 nodes	
on Firefox		~0.9	~0.9	~0.9	
on Chrome		~0.8	~0.8	~0.8	

Table: Execution times for path finding function

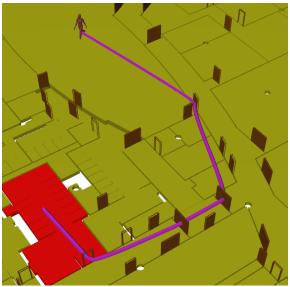
Framework 00000 00 BIM-Graph 0 0000 BIM-XACML

BIM Access Control Functions Accessibility

Framework 00000 00 BIM-Grapl 0 0000 BIM-XACML

Implementation 0 000 000000000

Authorisation Management using BIM


The proof-of-concept demonstrator addresses the three main physical access control administration problems:

- intuitive PAC policy creation
- automated/assisted PAC policy management
- easy to use analysis of access history

Framewor 00000 00 BIM-Graph 0 0000 BIM-XACML

Intuitive PAC policy creation

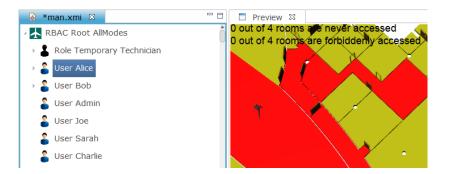


Background
0000000
00000

BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 000000000

Automated/assisted PAC policy management



Background
0000000
00000

BIM-Graph 0 0000 BIM-XACML

Easy to use analysis of access history

ound

Framework 00000 00 BIM-Graph 0 0000 BIM-XACML

Implementation 0 000 0000 00000000

QUI

Limitations and assumptions

BIM availability:

• Up-to-date BIMs of a facility based on the IFC specification will be available as a fundamental requirement

BIM efficiency:

- BIMs can become quite large and complex for most realistic situations and availability of efficient BIMs must be ensured BIM data security:
 - Data stored in BIMs must be securely managed

Framework 00000 00 BIM-Grap 0 0000 BIM-XACML

Implementation 0 000 0000000000

QUT

Future research opportunities

- BIM-PDP to enable BIM specific spatial conditional functions to be handled through a spatial reasoning component of the authorisation framework
- Usability testing to evaluate the effectiveness of using three-dimensional representations of buildings to improve access control and administration
- Practical testing to prove the practical viability of the proposed capabilities in operational environments

Framework 00000 00 BIM-Grapi 0 0000 BIM-XACML

Implementation 0 000 00000000000

Summary of contributions and achievements

- Identification of access control challenges in smart buildings and critical infrastructure environments
- Detailed study on building information models and associated data representation standards
- Proposal to use building information models to facilitate access control in complex environments

Framework 00000 00 BIM-Grapl 0 0000 BIM-XACML 00 000 QUI

Summary of contributions and achievements

- A proposal for a novel authorisation framework, which uses building information models
- A graph theory based formal representation of building information models, BIM-graph
- A building information models specific extension to XACML called BIM-XACML
- A proof-of-concept demonstrator that utilises building information models to facilitate security administration

Background	Framework	BIM-Graph	BIM-XACML	Implementation
000000	00000	0 0000	00 000	0 000 00000000●0

Conclusion

- Using building information models to facilitate access control can improve security of smart building environments
- Convergence of physical and logical access control is necessary in these environments
- The notion of using building information models in the context of security applications is a new idea
- This thesis addresses a range of challenges in access control in complex environments and makes a number of contributions

(QL

Background 0000000 00000	Framework 00000 00	BIM-Graph 0 0000	BIM-XACML oo ooo	Implementation ○ ○○○ ○○○○○○○○○○●
5				
S.				
1.				
		Thank Yo	ou la	QUT