
End to End Defense against Rootkits 

in Cloud Environment

Background

Sachin Shetty

Associate Professor
Electrical and Computer Engineering
Director, Cybersecurity Laboratory

Tennessee State University



Background

• Background on CPU and Linux kernel necessary to understand 
our detection system. 

• x86 memory protection mechanisms followed by Linux kernel 
memory layout. 

• Relocation work when kernel modules are loaded.



Background: Page-based Memory 
Protection

• Page-based protection divides the virtual address space of 
CPU into pages of fixed size. 

• Memory Management Unit(MMU) translate the virtual 
address into physical address through a data structure called 
page directory. 

• Page table entries in the page directory describe the access 
permissions of each page, including read/write and execute 
permissions.

• Particularly, execute permission indicated by NX-bit is 
available only when the PAE(Physical Address Extensions) of 
x86 32 mode or x86 64 mode is used. 



Background: Page-based Memory 
Protection

• When execute permissions of page table entries are available, 
a page can be executed if and only if the NX-bit of its page 
table entry is cleared. 

• Pages containing code/instructions are marked 
executable(NX-bit of the page table entry is cleared). 

• Linux kernels which support PAE take advantage of this 
feature, and only mark pages of kernel code and modules 
executable to guarantee normal execution flows. 

• Under this condition, when a rootkit is installed into the 
kernel space, the pages in which its code resides must also be 
marked executable



Background- Kernel Memory Layout

• In Linux system, all of the process share the same kernel 
address space. 

• The kernel address space is also divided into pages, thus a 
page directory is used to describe the kernel address space. 

• Page directory is the only one describing the kernel address 
space in the normal.

• In the kernel address space, some regions are mapped to the 
physical memory, including region of kernel code, region of 
kernel static data and regions allocating memory for dynamic 
kernel data..



Background- Kernel Memory Layout

• Other regions that are not mapped are reserved for kernel 
modules and other usage. 

• Kernel code consists of many functions, some of which are 
exported. 

• Exported functions can be used by kernel modules through 
their names, which are called symbols. 

• When the kernel is compiled and linked, the virtual addresses 
of the symbols(exported or not) of the kernel code and static 
data are determined and stored in the System:map file



Background- Kernel Memory Layout

• Regions of kernel code and modules must be marked 
executable in order to execute

• Kernel marks the other regions as non-executable so that GP 
exception will be raised if CPU try to get instructions from 
those nonexecutable regions.

• When a kernel-level rootkit is installed, its code may reside in 
the regions of kernel code, or modules

• Its code may also reside in the reserved regions or the regions 
for dynamic kernel data. 
– In this case, it has to clear NX-bits of the related page table entries in 

the page directory. 

– Creates a new executable region for its code.



Background: Loading Kernel Modules



Background: Loading Kernel Modules

• 1. Loads the relocatable file of the module from file system 
into temporary memory.

• 2. Checks the format of this module file, stores the 
parameters of this module, and makes sure that this module 
is not already loaded.

• 3. Allocates a page-aligned memory region for the 
initialization code of the module, and fills it with the 
corresponding content of the module. We call it init region.

• 4. Allocates a page-aligned memory region for the core 
executable code of the module, and fills it with the 
corresponding content of the module. We call it core region.



Background: Loading Kernel Modules

• 5. Relocates the module’s object code, using the kernel 
symbols table and module symbols table.

• 6. Processes the exported symbols of this module.

• 7. Frees the temporary memory allocated in step 1.

• 8. Executes the initialization code of this module.

• 9. Frees the init region allocated for the initialization code of 
this module.



Background: Loading Kernel Modules

• After a module is loaded, only its core region resides in the 
kernel space and this region is page-aligned. 

• However, the size of its core executable code is unlikely to be 
page-aligned.

• Therefore, a small space at the last of this region is never used 
by the module or kernel itself. We name this small space as 
unused space. 

• The size of unused space may vary between 0 and the page 
size. 

• Each module loaded into the kernel space likely contains an 
executable unused space which may be exploited by the 
kernel-level rootkits.


